Advertisement

Pharmaceutical Research

, Volume 23, Issue 2, pp 329–335 | Cite as

Kinetic Analysis on the Skin Disposition of Cytotoxicity as an Index of Skin Irritation Produced by Cetylpyridinium Chloride: Comparison of In Vitro Data using a Three-Dimensional Cultured Human Skin Model with In Vivo Results in Hairless Mice

  • Satoshi Kano
  • Kenji SugibayashiEmail author
Research Paper

Purpose

The aim of this study was to kinetically and dynamically analyze in vitro cytotoxicity as an index of skin irritation by use of a three-dimensional cultured human skin model and to compare the in vitro assay data with data from living animals.

Methods

A cationic surfactant, cetylpyridinium chloride (CPC), was selected as a model irritant. Living skin equivalent-high (LSE-high) and hairless mice were used for the in vitro and in vivo tests, respectively. Skin irritation dermatodynamics was evaluated by calorimetric thiazoyl blue (MTT) conversion assay both for in vitro and in vivo tests, whereas dermatokinetics of CPC in LSE-high and mouse skin were evaluated using HPLC.

Results

The time course of cell viability in the skin after application of CPC to intact skin was distinctly different from that of stratum-corneum-stripped skin in both LSE-high and hairless mice. Biphasic behavior characterized by two first-order rates with an inflection time point was observed in intact skin, whereas cell viability monoexponentially decreased immediately after CPC application in stripped skin. The time courses of cell viability in the skin and dermatodynamics were closely related to that of dermatokinetics of CPC.

Conclusion

The present study demonstrates that the in vitro cytotoxic profile was similar to the in vivo cytotoxicity test and that dermatodynamics was related to dermatokinetics of CPC.

Key Words

Cetylpyridinium chloride kinetics living skin equivalent-high MTT assay skin irritation 

Abbreviations

CPC

cetylpyridinium chloride

LSE-high

living skin equivalent-high

MTT

3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide

Notes

Acknowledgment

This study was supported in part by a Grant-in-Aid for Scientific Research (15590137 for K. Sugibayashi) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    FDA. Guidance for industry, exposure–response relationships—study design, data analysis, and regulatory applications, April 2003.Google Scholar
  2. 2.
    Draize, J. H., Woodard, G., Galvery, H. O. 1944Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranesJ. Pharmacol. Exp. Ther.82377390Google Scholar
  3. 3.
    Ponec, M. 2002Skin constructs for replacement of skin tissues for in vitro testingAdv. Drug Deliv. Rev.54S19S30PubMedCrossRefGoogle Scholar
  4. 4.
    Nolte, C. J. M., Olson, M. A., Bilbo, P. R., Parenteau, N. L. 1993Development of stratum corneum and barrier function in an organotypic skin cultureArch. Dermatol. Res.285466474CrossRefPubMedGoogle Scholar
  5. 5.
    Bilbo, P. R., Nolte, C. J. M., Oleson, M. A., Mason, V. S., Parenteau, N. L. 1993Skin in complex culture: the transition from “culture” phenotype to organotypic phenotypeJ. Toxicol. Cutan. Ocular. Toxicol.12183196CrossRefGoogle Scholar
  6. 6.
    Ishibashi, T. 19993-Dimensional skin culture model TESTSKIN: fabrication and applicationsMedical Science digest25121124Google Scholar
  7. 7.
    Botham, P. A. 2004The validation of in vitro methods for skin irritationToxicol. Lett.149387390CrossRefPubMedGoogle Scholar
  8. 8.
    J. J. Parran Jr. Mouthwash compositions. U.S. Patent 4,323,551. The Procter and Gamble Co. (1981).Google Scholar
  9. 9.
    Registry of Toxic Effects of Chemical Substances (RTECS). No. UU5075000.Google Scholar
  10. 10.
    Morikawa, N., Morota, K., Morita, S., Kojima, H., Nakata, S., Konishi, H. 2002Prediction of human skin irritancy using a cultured human skin model: comparison of chemical application procedures and development of a novel chemical application procedure using the Vitrolife-Skin™ modelAltern. Anim. Test. Experiment.9110Google Scholar
  11. 11.
    Kojima, H. 2005Consideration regarding the importance of in vivo data for the development of an alternative to conventional skin irritation testingAltern. Anim. Test. Experiment.113138Google Scholar
  12. 12.
    Sugibayashi, K., Watanabe, T., Hasegawa, T., Takahashi, H., Ishibashi, T. 2002Kinetic analysis on the in vitro cytotoxicity using Living Skin Equivalent for ranking the toxic potential of dermal irritantsToxicol. In Vitro16759763CrossRefPubMedGoogle Scholar
  13. 13.
    Washitake, M., Yajima, T., Anmo, T., Arita, T., Hori, R. 1973Studies on percutaneous absorption of drugs. III. Percutaneous absorption of drugs through damaged skinChem. Pharm. Bull.2124442451PubMedGoogle Scholar
  14. 14.
    Mosmann, T. 1983Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ. Immunol. Methods655563CrossRefPubMedGoogle Scholar
  15. 15.
    Slater, T. F., Sawyer, B., Straeuli, U. 1963Studies on succinate–tetrazolium reductase systems. III. Points of coupling of four different tetrazolium saltsBiochim. Biophys. Acta.77383393PubMedCrossRefGoogle Scholar
  16. 16.
    Surber, C., Wilhelm, K. P., Hori, M., Maibach, H. I., Guy, R. H. 1990Optimization of topical therapy: partitioning of drugs into stratum corneumPharm. Res.713201324CrossRefPubMedGoogle Scholar
  17. 17.
    Dayneka, N. L., Garg, V., Jusko, W. J. 1993Comparison of four basic models of indirect pharmacodynamic responsesJ. Pharmacokinet. Biopharm.21457478CrossRefPubMedGoogle Scholar
  18. 18.
    Jusko, W. J., Ko, H. C. 1994Physiologic indirect response models characterize diverse types of pharmacodynamic effectsClin. Pharmacol. Ther.56406419PubMedGoogle Scholar
  19. 19.
    Osborne, R., Perkins, M. A. 1994An approach for development of alternative test methods based on mechanisms of skin irritationFood Chem. Toxicol.32133142PubMedCrossRefGoogle Scholar
  20. 20.
    Watanabe, T., Hasegawa, T., Takahashi, H., Ishibashi, T., Itagaki, H., Sugibayashi, K. 2002Utility of MTT assay in three-dimensional cultured human skin model as an alternative for Draize skin irritation test: approach using diffusion law of irritant in skin and toxicokinetics–toxicodynamics correlationPharm. Res.19669675CrossRefPubMedGoogle Scholar
  21. 21.
    Marzulli, F. N. 1962Barrier to skin penetrationJ. Invest. Dermatol.39387393PubMedGoogle Scholar
  22. 22.
    Watanabe, T., Hasegawa, T., Takahashi, H., Ishibashi, T., Takayama, K., Sugibayashi, K. 2001Utility of three-dimensional cultured human skin model as a tool to evaluate skin permeation of drugsAltern. Anim. Test. Experiment.8114Google Scholar
  23. 23.
    Fentem, J. H., Briggs, D., Chesne, C., Elliott, G. R., Harbell, J. W., Heylings, J. R., Portes, P., Roguet, R., Sandt, J. J., Botham, P. A. 2001A prevalidation study on in vitro tests for acute skin irritation. results and evaluation by the Management TeamToxicol. in Vitro155793CrossRefPubMedGoogle Scholar
  24. 24.
    Berardesca, E., Distante, F. 1994The modulation of skin irritationContact Dermatitis31281287PubMedCrossRefGoogle Scholar
  25. 25.
    Scala, J., McOsker, D. E., Reller, H. H. 1968The percutaneous absorption of ionic surfactantsJ. Invest. Dermatol.50371379PubMedGoogle Scholar
  26. 26.
    Williams, A. C., Barry, B. W. 2004Penetration enhancersAdv. Drug Deliv. Rev.56603618CrossRefPubMedGoogle Scholar
  27. 27.
    Brugerolle de Fraissinette, A., Picarles, V., Chibout, S., Kolopp, M., Medina, J., Burtin, P., Ebelin, M. E., Osborne, S., Mayer, F. K., Spake, A., Rosdy, M., Wever, B., Ettlin, R. A., Cordier, A. 1999Predictivity of an in vitro model for acute and chronic skin irritation (SkinEthic) applied to the testing of topical vehiclesCell Biol. Toxicol.15121135PubMedCrossRefGoogle Scholar
  28. 28.
    Osborne, R., Perkins, M. A. 1994An approach for development of alternative test methods based on mechanisms of skin irritationFood Chem. Toxicol.32133142PubMedCrossRefGoogle Scholar
  29. 29.
    Robinson, M. K., Cohen, C., Fraissinette, A. B., Ponec, M., Whittle, E., Fentem, J. H. 2002Non-animal testing strategies for assessment of the skin corrosion and skin irritation potential of ingredients and finished productsFood Chem. Toxicol.40573592PubMedCrossRefGoogle Scholar
  30. 30.
    Welss, T., Basketter, D. A., Schroder, K. R. 2004 In vitro skin irritation: facts and future. State of the art review of mechanisms and modelsToxicol. In Vitro18231243CrossRefPubMedGoogle Scholar
  31. 31.
    Baumann, H., Gauldie, J. 1994The acute phase responseImmunol. Today157480CrossRefPubMedGoogle Scholar
  32. 32.
    Luger, T. A. 1989Epidermal cytokinesActa Derm.-Venereol., Suppl. (Stockh.)1516176discussion 106–110Google Scholar
  33. 33.
    Nickoloff, B. J., Naidu, Y. 1994Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skinJ. Am. Acad. Dermatol.30535546PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  2. 2.Maruho Co., Ltd.Chudoji, Shimogyo-kuJapan

Personalised recommendations