Pharmaceutical Research

, Volume 24, Issue 1, pp 157–167 | Cite as

Thiolated Chitosan/DNA Nanocomplexes Exhibit Enhanced and Sustained Gene Delivery

  • Dongwon Lee
  • Weidong Zhang
  • Shawna A. Shirley
  • Xiaoyuan Kong
  • Gary R. Hellermann
  • Richard F. Lockey
  • Shyam S. MohapatraEmail author
Research Paper



Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative.


Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo.


Thiolated chitosan–DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio ≥ 2.5:1. CSH360/DNA nanocomplexes induced significantly (P < 0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days.


Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.

Key words

chitosan gene transfer thiolation crosslinking nanocomplexes 



This work was supported by NIH (5RO1HL71101-01A2) awarded to SSM and Culverhouse Endowment to the Division of Allergy and Immunology.


  1. 1.
    A. K. Salem, P. C. Searson, and K. W. Leong. Multifunctional nanorods for gene delivery. Nature Materials 2:668–671 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 100:5–28 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Yamada, Y. Iwasaki, H. Tada, H. Iwabuki, M. K. L. Chuah, T. VandenDriessche, H. Fukuda, A. Kondo, M. Ueda, M. Seno, K. Tanizawa, and S. Kuroda. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat. Biotechnol. 21:885–890 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont, and J. C. Fernandes. Chitosan–DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57:1–8 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Ravi Kumar, M. Sameti, S. S. Mohapatra, X. Kong, R. F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt, and C. M. Lehr. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J. Nanosci. Nanotechnol. 4:876–881 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Hellermann and S. S. Mohapatra. Genetic therapy: on the brink of a new future. Genet. Vaccines Ther. 4:1 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Lee, J. W. Nah, Y. Kwon, J. J. Koh, K. S. Ko, and S. W. Kim. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm. Res. 18:427–431 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Shen, J. Tan, and W. M. Saltzman. Surface-mediated gene transfer from nanocomposites of controlled texture. Nature Materials 3:569–574 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    W. D. Zhang, H. Yang, X. Y. Kong, S. Mohapatra, H. San Juan-Vergara, G. Hellermann, S. Behera, R. Singam, R. F. Lockey, and S. S. Mohapatra. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med. 11:56–62 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Ravi Kumar, S. S. Mohapatra, X. Kong, P. K. Jena, U. Bakowsky, and C. M. Lehr. Cationic poly(lactide-co-glycolide) nanoparticles as efficient in vivo gene transfection agents. J. Nanosci. Nanotechnol. 4:990–994 (2004).CrossRefGoogle Scholar
  11. 11.
    M. Ravi Kumar, G. Hellermann, R. F. Lockey, and S. S. Mohapatra. Nanoparticle-mediated gene delivery: State of the art. Expert Opin. Biol. Ther. 4:1213–1224 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Kumar, A. K. Behera, R. F. Lockey, J. Zhang, G. Bhullar, C. P. De La Cruz, L. C. Chen, K. W. Leong, S. K. Huang, and S. S. Mohapatra. Intranasal gene transfer by chitosan–DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum. Gene Ther. 13:1415–1425 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    S. S. Mohapatra. Mucosal gene expression vaccine: a novel vaccine strategy for respiratory syncytial virus. Pediatr. Infect. Dis. J. 22:S100–S104 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Kumar, X. Kong, A. K. Behera, G. R. Hellermann, R. F. Lockey, and S. S. Mohapatra. Chitosan IFN-r-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet. Vaccines Ther. 1:1–3 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. C. Wang, S. H. Kao, and H. J. Hsieh. A chemical surface modification of chitosan by glycoconjugates to enhance the cell–biomaterial interaction. Biomacromolecules 4:224–231 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Kiang, H. Wen, H. W. Lim, and K. W. Leong. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25:5293–5301 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Y. Lee, I. C. Kwon, Y.-H. Kim, W. H. Jo, and S. Y. Jeong. Preparation of chitosan self-aggregates as a gene delivery system. J. Control. Release 51:213–220 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Koping-Hoggard, K. M. Varum, M. Issa, S. Danielsen, B. E. Christensen, B. T. Stokke, and P. Artursson. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther. 11:1441–1452 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Bernkop-Schnurch, M. Hornof, and T. Zoidl. Thiolated polymers-thiomers: Synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm. 260:229–237 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Roldo, M. Hornof, P. Caliceti, and A. Bernkop-Schnurch. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 57:115–121 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    C. E. Kastand A. Bernkop-Schnurch. Thiolated polymers–thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates. Biomaterials 22:2345–2352 (2001).CrossRefGoogle Scholar
  22. 22.
    H. K. N. Langoth, G. Schoffmann, I. Schmerold, M. Schuh, S. Franz, P. Kurka, and A. Bernkop-Schnurch. Thiolated chitosans: design and in vivo evaluation of a mucoadhesive buccal peptide drug delivery system. Pharm. Res. 23:573–579 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    P. He, S. S. Davis, and L. Illum. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int. J. Pharm. 166:75–88 (1998).CrossRefGoogle Scholar
  24. 24.
    A. Bernkop-Schnurch, C. E. Kast, and D. Guggi. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J. Control. Release 93:95–103 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Bernkop-Schnurch, D. Guggi, and Y. Pinter. Thiolated chitosans: Development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J. Control. Release 94:177–186 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Bernkop-Schnurch, M. Hornof, and D. Guggi. Thiolated chitosans. Eur. J. Pharm. Biopharm. 57:9–17 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Cerchiara, B. Luppi, F. Bigucci, and V. Zecchi. Chitosan salts as nasal sustained delivery systems for peptidic drugs. J. Pharm. Pharmacol. 55:1623–1627 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    D. W. Lee and R. H. Baney. Oligochitosan derivatives bearing electron-deficient aromatic rings for adsorption of amitriptyline: implications for drug detoxification. Biomacromolecules 5:1310–1315 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Sato, T. Ishii, and Y. Okahata. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22:2075–2080 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    T. Ishii, Y. Okahata, and T. Sato. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim. Biophys. Acta, Biomembr. 1514:51–64 (2001).CrossRefGoogle Scholar
  31. 31.
    A. V. Ii’inaand V. P. Varlamov. Chitosan-based polyelectrolyte complexes: a review. Appl. Biochem. Microbiol. 41:5–11 (2005).CrossRefGoogle Scholar
  32. 32.
    N. Fang, V. Chan, H. Q. Mao, and K. W. Leong. Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2:1161–1168 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–554 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    F. Scherer, U. Schillinger, U. Putz, A. Stemberger, and C. Plank. Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J. Gene Med. 4:634–643 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    B. D. Klugherz, P. L. Jones, X. M. Cui, W. L. Chen, N. F. Meneveau, S. DeFelice, J. Connolly, R. L. Wilensky, and R. J. Levy. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat. Biotechnol. 18:1181–1184 (2000).PubMedCrossRefGoogle Scholar
  36. 36.
    H. Cohen, R. J. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, and G. Golomb. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7:1896–1905 (2000).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Shen, E. Goldberg, and W. M. Saltzman. Gene expression and mucosal immune responses after vaginal DNA immunization in mice using a controlled delivery matrix. J. Control. Release 86:339–348 (2003).PubMedCrossRefGoogle Scholar
  38. 38.
    V. L. Truong-Le, J. T. August, and K. W. Leong. Controlled gene delivery by DNA-gelatin nanospheres. Hum. Gene Ther. 9:1709–1717 (1998).PubMedGoogle Scholar
  39. 39.
    K. W. Chun, J. B. Lee, S. H. Kim, and T. G. Park. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 26:3319–3326 (2005).PubMedCrossRefGoogle Scholar
  40. 40.
    M. L. Lorenzo-Lamosa, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Design of microencapsulated chitosan microspheres for colonic drug delivery. J. Control. Release 52:109–118 (1998).PubMedCrossRefGoogle Scholar
  41. 41.
    Y. H. Yun, D. J. Goetz, P. Yellen, and W. L. Chen. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 25:147–157 (2004).PubMedCrossRefGoogle Scholar
  42. 42.
    D. Luo and W. M. Saltzman. Synthetic DNA delivery systems. Nat. Biotechnol. 18:33–37 (2000).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K. M. Varum, and P. Artursson. Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 8:1108–1121 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Dongwon Lee
    • 1
  • Weidong Zhang
    • 1
  • Shawna A. Shirley
    • 1
  • Xiaoyuan Kong
    • 1
  • Gary R. Hellermann
    • 1
  • Richard F. Lockey
    • 1
  • Shyam S. Mohapatra
    • 1
    Email author
  1. 1.Division of Allergy and Immunology and Joy McCann Culverhouse Airway Disease Center, Department of Internal MedicineUniversity of South Florida College of Medicine and James A. Haley Veteran’s HospitalTampaUSA

Personalised recommendations