Pharmaceutical Research

, Volume 23, Issue 11, pp 2505–2514 | Cite as

Protection Against Chemotherapy-Induced Alopecia

  • Jie Wang
  • Ze Lu
  • Jessie L.-S. AuEmail author
Review Article



The goal is to provide an overview on the advances in protection against chemotherapy-induced alopecia (CIA).

Materials and Methods

The four major parts of this review are (a) overview of the hair follicle biology, (b) characteristics of CIA, (c) state-of-the-art animal models of CIA, and (d) experimental approaches on protection against CIA.


The hair follicle represents an unintended target of cancer chemotherapy. CIA is a significant side effect that compromises the quality of life of patients. Overcoming CIA represents an area of unmet needs, especially for females and children. Significant progresses have been made in the last decade on the pathobiology of CIA. The pharmacological agents under evaluation include drug-specific antibodies, hair growth cycle modifiers, cytokines and growth factors, antioxidants, cell cycle or proliferation modifiers, and inhibitors of apoptosis. Their potential applications and limitations are discussed.


Multiple classes of agents with different action mechanisms have been evaluated in animal CIA models. Most of these protective agents have activity limited to a single chemotherapeutic agent. In comparison, calcitriol and cyclosporine A have broader spectrum of activity and can prevent against CIA by multiple chemotherapeutic agents. Among the three agents that have been evaluated in humans, AS101 and Minoxidil were able to reduce the severity or shorten the duration of CIA but could not prevent CIA.

Key words

alopecia chemotherapy hair follicle 



cytosine arabinoside


chemotherapy-induced alopecia


epidermal growth factor


fibroblast growth factor


inner root sheath


outer root sheath


parathyroid hormone


PTH-related protein



This work is supported in part by a research grant R43CA107998 from the National Cancer Institute, DHHS.


  1. 1.
    N. Carelle, E. Piotto, A. Bellanger, J. Germanaud, A. Thuillier, and D. Khayat. Changing patient perceptions of the side effects of cancer chemotherapy. Cancer 95:155–163 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    V. J. Dorr. A practioner’s guide to cancer-related alopecia. Semin. Oncol. 25:562–570 (1998).PubMedGoogle Scholar
  3. 3.
    C. Lindley, J. S. McCune, T. E. Thomason, D. Lauder, A. Sauls, S. Adkins, and W. T. Sawyer. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer Pract. 7:59–65 (1999).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Pickard-Holley. The symptom experience of alopecia. Semin. Oncol. Nurs. 11:235–238 (1995).CrossRefGoogle Scholar
  5. 5.
    E. L. McGarvey, L. D. Baum, R. C. Pinkerton, and L. M. Rogers. Psychological sequelae and alopecia among women with cancer. Cancer Pract. 9:283–289 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Munstedt, N. Manthey, S. Sachsse, and H. Vahrson. Changes in self-concept and body image during alopecia induced cancer chemotherapy. Support. Care Cancer 5:139–143 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    K. O. Baxley, L. K. Erdman, E. B. Henry, and B. J. Roof. Alopecia: effect on cancer patients’ body image. Cancer Nurs. 7:499–503 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Harrison and R. Sinclair. Optimal management of hair loss (alopecia) in children. Am. J. Clin Dermatol. 4:757–770 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Wagner and M. Gorely. Body image and patients experiencing alopecia as a result of cancer chemotherapy. Cancer Nurs. 2:365–369 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Spiegel and J. Giese-Davis. Depression and cancer: mechanisms and disease progression. Biol. Psychiatry 54:269–282 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Parker-Pope. Why curing your cancer may not be the best idea. Wall Street J., R1–R5, Dow Jones, 2003.Google Scholar
  12. 12.
    R. Paus, S. Muller-Rover, C. van Der Veen, M. Maurer, S. Eichmuller, G. Ling, U. Hofmann, K. Foitzik, L. Mecklenburg, and B. Handjiski. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113:523–532 (1999).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Cotsarelis, T. T. Sun, and R. M. Lavker. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    R. M. Lavker, T. T. Sun, H. Oshima, Y. Barrandon, M. Akiyama, C. Ferraris, G. Chevalier, B. Favier, C. A. Jahoda, D. Dhouailly, A. A. Panteleyev, and A. M. Christiano. Hair follicle stem cells. J. Investig. Dermatol. Symp. Proc. 8:28–38 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Lyle, M. Christofidou-Solomidou, Y. Liu, D. E. Elder, S. Albelda, and G. Cotsarelis. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111(21):3179–3188 (1998).PubMedGoogle Scholar
  16. 16.
    R. J. Morris, Y. Liu, L. Marles, Z. Yang, C. Trempus, S. Li, J. S. Lin, J. A. Sawicki, and G. Cotsarelis. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22:411–417 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    K. S. Stenn and R. Paus. Controls of hair follicle cycling. Physiol. Rev. 81:449–494 (2001).PubMedGoogle Scholar
  18. 18.
    R. Paus, N. Krejci-Papa, L. Li, B. M. Czarnetzki, and R. M. Hoffman. Correlation of proteolytic activities of organ cultured intact mouse skin with defined hair cycle stages. J. Dermatol. Sci. 7:202–209 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    W. C. Weinberg, P. D. Brown, W. G. Stetler-Stevenson, and S. H. Yuspa. Growth factors specifically alter hair follicle cell proliferation and collagenolytic activity alone or in combination. Differentiation 45:168–178 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Muller-Rover, E. J. Peters, V. A. Botchkarev, A. Panteleyev, and R. Paus. Distinct patterns of NCAM expression are associated with defined stages of murine hair follicle morphogenesis and regression. J. Histochem. Cytochem. 46:1401–1410 (1998).PubMedGoogle Scholar
  21. 21.
    A. J. Reynolds and C. A. Jahoda. Hair follicle stem cells? A distinct germinative epidermal cell population is activated in vitro by the presence of hair dermal papilla cells. J. Cell Sci. 99 (Pt 2):373–385 (1991).PubMedGoogle Scholar
  22. 22.
    E. A. Olsen. Disorders of Hair Growth: Diagnosis and Treatment. McGraw-Hill, Health Professions Division, 1994.Google Scholar
  23. 23.
    G. Cotsarelis. The hair follicle: dying for attention. Am. J. Pathol. 151:1505–1509 (1997).PubMedGoogle Scholar
  24. 24.
    M. H. Hardy. The secret life of the hair follicle. Trends Genet. 8:55–61 (1992).PubMedGoogle Scholar
  25. 25.
    H. Oshima, A. Rochat, C. Kedzia, K. Kobayashi, and Y. Barrandon. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Inaba, J. Anthony, and C. McKinstry. Histologic study of the regeneration of axillary hair after removal with subcutaneous tissue shaver. J. Invest. Dermatol. 72:224–231 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    R. F. Oliver. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J. Embryol. Exp. Morphol. 15:331–347 (1966).PubMedGoogle Scholar
  28. 28.
    R. F. Oliver. Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wall. J. Embryol. Exp. Morphol. 17:27–34 (1967).PubMedGoogle Scholar
  29. 29.
    R. F. Oliver. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J. Embryol. Exp. Morphol. 18:43–51 (1967).PubMedGoogle Scholar
  30. 30.
    C. Blanpain, W. E. Lowry, A. Geoghegan, L. Polak, and E. Fuchs. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635–648 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Tumbar, G. Guasch, V. Greco, C. Blanpain, W. E. Lowry, M. Rendl, and E. Fuchs. Defining the epithelial stem cell niche in skin. Science 303:359–363 (2004).PubMedADSCrossRefGoogle Scholar
  32. 32.
    L. Alonso and E. Fuchs. Stem cells in the skin: waste not, Wnt not. Genes Dev. 17:1189–1200 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    L. Alonso and E. Fuchs. Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. USA 100 (Suppl 1):11830–11835 (2003).PubMedCrossRefADSGoogle Scholar
  34. 34.
    H. B. Chase. Growth of the hair. Physiol. Rev. 34:113–126 (1954).PubMedGoogle Scholar
  35. 35.
    G. Powis and K. L. Kooistra. Doxorubicin-induced hair loss in the Angora rabbit: a study of treatments to protect against the hair loss. Cancer Chemother. Pharmacol. 20:291–296 (1987).PubMedGoogle Scholar
  36. 36.
    Bierman H.R., Kelly K.H., Knudson A.G., T. Maekawa, and G.M. Timmis. The influence of 1,4-dimethyl sulfonoxy-1,4-dimethylbutane (CB 2348, Dimethyl Myleran) in neoplastic disease. Ann. N.Y. Acad. Sci. 68:1211–1222 (1958).PubMedADSGoogle Scholar
  37. 37.
    D. Batchelor. Hair and cancer chemotherapy: consequences and nursing care—a literature study. Eur. J. Cancer Care (Engl.) 10:147–163 (2001).CrossRefGoogle Scholar
  38. 38.
    A. M. Hussein. Chemotherapy-induced alopecia: new developments. South. Med. J. 86:489–496 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    B. D. Lawenda, H. M. Gagne, D. P. Gierga, A. Niemierko, W. M. Wong, N. J. Tarbell, G. T. Chen, F. H. Hochberg, and J. S. Loeffler. Permanent alopecia after cranial irradiation: dose–response relationship. Int. J. Radiat. Oncol. Biol. Phys. 60: 879–887 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    C. S. Wen, S. M. Lin, Y. Chen, J. C. Chen, Y. H. Wang, and S. H. Tseng. Radiation-induced temporary alopecia after embolization of cerebral arteriovenous malformations. Clin. Neurol. Neurosurg. 105:215–217 (2003).PubMedCrossRefGoogle Scholar
  41. 41.
    L. Li, L. B. Margolis, R. Paus, and R. M. Hoffman. Hair shaft elongation, follicle growth, and spontaneous regression in long-term, gelatin sponge-supported histoculture of human scalp skin. Proc. Natl. Acad. Sci. USA 89:8764–8768 (1992).PubMedADSCrossRefGoogle Scholar
  42. 42.
    L. Li, R. Paus, A. Slominski, and R. M. Hoffman. Skin histoculture assay for studying the hair cycle in vitro. Cell Dev. Biol. 28A:695–698 (1992).Google Scholar
  43. 43.
    R. Paus, K. S. Stenn, and R. E. Link. Telogen skin contains an inhibitor of hair growth. Br. J. Dermatol. 122:777–784 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    R. Paus, B. Handjiski, S. Eichmuller et al. Chemotherapy-induced alopecia in mice-induction by cyclophosphamide, inhibition by cyclosporine-A, and modulation by dexamethasone. Am. J. Pathol. 144:719–734 (1994).PubMedGoogle Scholar
  45. 45.
    D. Van Neste, B. De Brouwer, and M. Dumortier. Reduced linear hair growth rates of vellus and of terminal hairs produced by human balding scalp grafted onto nude mice. Ann. N. Y. Acad. Sci. 642:480–482 (1991).PubMedCrossRefADSGoogle Scholar
  46. 46.
    A. Domashenko, S. Gupta, and G. Cotsarelis. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat. Biotechnol. 18:420–423 (2000).PubMedCrossRefGoogle Scholar
  47. 47.
    T. Hashimoto, T. Kazama, M. Ito, K. Urano, Y. Katakai, N. Yamaguchi, and Y. Ueyama. Histologic and cell kinetic studies of hair loss and subsequent recovery process of human scalp hair follicles grafted onto severe combined immunodeficient mice. J. Invest. Dermatol. 115:200–206 (2000).PubMedCrossRefGoogle Scholar
  48. 48.
    J. P. Sundberg and L. E. King, Jr. Mouse models for the study of human hair loss. Dermatol. Clin. 14:619–632 (1996).PubMedGoogle Scholar
  49. 49.
    S. M. Jankovic and S. V. Jankovic. The control of hair growth. Dermatol. OnLine J. 4:2 (1998).PubMedGoogle Scholar
  50. 50.
    A. M. Hussein, J. J. Jimenez, C. A. McCall, and A. A. Yunis. Protection from chemotherapy-induced alopecia in a rat model. Science 249:1564–1566 (1990).PubMedADSCrossRefGoogle Scholar
  51. 51.
    R. Cece, S. Cazzaniga, D. Morellie, L. Sfondrini, M. Bignotto, S. Menard, M. I. Colnaghi, and A. Balsari. Apoptosis of hair follicle cells during doxorubicin-induced alopecia in rats. Lab. Invest. 75:601–609 (1996).PubMedGoogle Scholar
  52. 52.
    A. L. Balsari, D. Morelli, S. Menard, U. Veronesi, and M. I. Colnaghi. Protection against doxorubicin-induced alopecia in rats by liposome-entrapped monoclonal antibodies. FASEB J. 8:226–230 (1994).PubMedGoogle Scholar
  53. 53.
    A. M. Hussein. Protection against cytosine arabinoside-induced alopecia by minoxidil in a rat animal model. Int. J. Dermatol. 34:470–473 (1995).PubMedGoogle Scholar
  54. 54.
    J. J. Jimenez and A. A. Yunis. Protection from 1-beta-D-arabinofuranosylcytosine-induced alopecia by epidermal growth-factor and fibroblast growth-factor inthe rat model. Cancer Res. 52:413–415 (1992).PubMedGoogle Scholar
  55. 55.
    M. B. Schilli, R. Paus, and A. Menrad. Reduction of intrafollicular apoptosis in chemotherapy-induced alopecia by topical calcitriol-analogs. J. Invest. Dermatol. 111:598–604 (1998).PubMedCrossRefGoogle Scholar
  56. 56.
    D. J. Tobin, E. Hagen, V. A. Botchkarev, and R. Paus. Do hair bulb melanocytes undergo apoptosis during hair follicle regression (catagen)? J. Invest Dermatol. 111:941–947 (1998).PubMedCrossRefGoogle Scholar
  57. 57.
    G. Lindner, V. A. Botchkarev, N. V. Botchkareva, G. Ling, C. van Der Veen, and R. Paus. Analysis of apoptosis during hair follicle regression (catagen). Am. J. Pathol. 151:1601–1617 (1997).PubMedGoogle Scholar
  58. 58.
    A. A. Sharov, G. Z. Li, T. N. Palkina, T. Y. Sharova, B. A. Gilchrest, and V. A. Botchkarev. Fas and c-kit are involved in the control of hair follicle melanocyte apoptosis and migration in chemotherapy-induced hair loss. J. Invest. Dermatol. 120:27–35 (2003).PubMedCrossRefGoogle Scholar
  59. 59.
    U. Ohnemus, M. Unalan, B. Handjiski, and R. Paus. Topical estrogen accelerates hair regrowth in mice after chemotherapy-induced alopecia by favoring the dystrophic catagen response pathway to damage. J. Invest. Dermatol. 122:7–13 (2004).PubMedCrossRefGoogle Scholar
  60. 60.
    A. Shirai, H. Tsunoda, T. Tamaoki, and T. Kamiya. Topical application of cyclosporin A induces rapid-remodeling of damaged anagen hair follicles produced in cyclophosphamide administered mice. J. Dermatol. Sci. 27:7–13 (2001).PubMedCrossRefGoogle Scholar
  61. 61.
    J. M. Simister. Alopecia and cytotoxic drugs. Br. Med. J. 2:1138 (1966).PubMedCrossRefGoogle Scholar
  62. 62.
    P. Katsimbri, A. Bamias, and N. Pavlidis. Prevention of chemotherapy-induced alopecia using an effective scalp cooling system. Eur. J. Cancer 36:766–771 (2000).PubMedCrossRefGoogle Scholar
  63. 63.
    C. Protiere, K. Evans, J. Camerlo, M. P. D’Ingrado, G. Macquart-Moulin, P. Viens, D. Maraninchi, and D. Genre. Efficacy and tolerance of a scalp-cooling system for prevention of hair loss and the experience of breast cancer patients treated by adjuvant chemotherapy. Support. Care Cancer 10:529–537 (2002).PubMedCrossRefGoogle Scholar
  64. 64.
    I. G. Ron, Y. Kalmus, Z. Kalmus, M. Inbar, and S. Chaitchik. Scalp cooling in the prevention of alopecia in patients receiving depilating chemotherapy. Support. Care Cancer 5:136–138 (1997).PubMedCrossRefGoogle Scholar
  65. 65.
    G. Lutz. Effects of cyclosporin A on hair. Skin Pharmacol. 7:101–104 (1994).PubMedCrossRefGoogle Scholar
  66. 66.
    R. Paus, K. S. Stenn, and R. E. Link. The induction of anagen hair growth in telogen mouse skin by cyclosporine A administration. Lab. Invest. 60:365–369 (1989).PubMedGoogle Scholar
  67. 67.
    M. Taylor, A. T. Ashcroft, and A. G. Messenger. Cyclosporin A prolongs human hair growth in vitro. J. Invest. Dermatol. 100:237–239 (1993).PubMedCrossRefGoogle Scholar
  68. 68.
    J. Liu, J. D. Farmer, Jr., W. S. Lane, J. Friedman, I. Weissman, and S. L. Schreiber. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66:807–815 (1991).PubMedCrossRefGoogle Scholar
  69. 69.
    S. L. Schreiber. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell 70:365–368 (1992).PubMedCrossRefGoogle Scholar
  70. 70.
    A. M. Hussein, A. Stuart, and W. P. Peters. Protection against chemotherapy-induced alopecia by cyclosporin A in the newborn rat animal model. Dermatology 190:192–196 (1995).PubMedCrossRefGoogle Scholar
  71. 71.
    B. Sredni, R. H. Xu, M. Albeck, U. Gafter, R. Gal, A. Shani, T. Tichler, J. Shapira, I. Bruderman, R. Catane, B. Kaufman, J. K. Whisnant, K. L. Mettinger, and Y. Kalechman. The protective role of the immunomodulator AS101 against chemotherapy-induced alopecia studies on human and animal models. Int. J. Cancer 65:97–103 (1996).PubMedCrossRefGoogle Scholar
  72. 72.
    A. G. Messenger and J. Rundegren. Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150:186–194 (2004).PubMedCrossRefGoogle Scholar
  73. 73.
    M. Duvic, N. A. Lemak, V. Valero, S. R. Hymes, K. L. Farmer, G. N. Hortobagyi, R. J. Trancik, B. A. Bandstra, and L. D. Compton. A randomized trial of minoxidil in chemotherapy-induced alopecia. J. Am. Acad. Dermatol. 35:74–78 (1996).PubMedCrossRefGoogle Scholar
  74. 74.
    C. O. Granai, H. Frederickson, W. Gajewski, A. Goodman, A. Goldstein, and H. Baden. The use of minoxidil to attempt to prevent alopecia during chemotherapy for gynecologic malignancies. Eur. J. Gynaecol. Oncol. 12:129–132 (1991).PubMedGoogle Scholar
  75. 75.
    R. Rodriguez, M. Machiavelli, B. Leone et al. Minoxidil (Mx) as a prophylaxis of doxorubicin-induced alopecia. Ann. Oncol. 5:769–770 (1994).PubMedGoogle Scholar
  76. 76.
    D. Tran, R. D. Sinclair, A. P. Schwarer, and C. W. Chow. Permanent alopecia following chemotherapy and bone marrow transplantation. Aust. J. Dermatol. 41:106–108 (2000).CrossRefGoogle Scholar
  77. 77.
    D. M. Danilenko, B. D. Ring, and G. F. Pierce. Growth factors and cytokines in hair follicle development and cycling: recent insights from animal models and the potentials for clinical therapy. Mol. Med. Today 2:460–467 (1996).PubMedCrossRefGoogle Scholar
  78. 78.
    R. Paus and G. Cotsarelis. The biology of hair follicles. N. Engl. J. Med. 341:491–497 (1999).PubMedCrossRefGoogle Scholar
  79. 79.
    R. Imai, T. Jindo, K. Mochida, S. Shimaoka, K. Takamori, and H. Ogawa. Effects of cytokines, anti-cancer agents and cocarcinogen on DNA synthesis in hair bulb cells. J. Dermatol. Sci. 5:73–80 (1993).PubMedCrossRefGoogle Scholar
  80. 80.
    D. L. du Cros. Fibroblast growth factor and epidermal growth factor in hair development. J. Invest. Dermatol. 101:106S–113S (1993).PubMedCrossRefGoogle Scholar
  81. 81.
    D. L. du Cros. Fibroblast growth factor influences the development and cycling of murine hair follicles. Dev. Biol. 156:444–453 (1993).PubMedCrossRefGoogle Scholar
  82. 82.
    R. Halaban, R. Langdon, N. Birchall, C. Cuono, A. Baird, G. Scott, G. Moellmann, and J. McGuire. Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J. Cell Biol. 107:1611–1619 (1988).PubMedCrossRefGoogle Scholar
  83. 83.
    C. Booth and C. S. Potten. Keratinocyte growth factor increases hair follicle survival following cytotoxic insult. J. Invest. Dermatol. 114:667–673 (2000).PubMedCrossRefGoogle Scholar
  84. 84.
    D. M. Danilenko, B. D. Ring, D. Yanagihara, W. Benson, B. Wiemann, C. O. Starnes, and G. F. Pierce. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am. J. Pathol. 147:145–154 (1995).PubMedGoogle Scholar
  85. 85.
    G. F. Pierce, D. Yanagihara, K. Klopchin, D. M. Danilenko, E. Hsu, W. C. Kenney, and C. F. Morris. Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor. J. Exp. Med. 179:831–840 (1994).PubMedCrossRefGoogle Scholar
  86. 86.
    J. M. Hebert, T. Rosenquist, J. Gotz, and G. R. Martin. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78:1017–1025 (1994).PubMedCrossRefGoogle Scholar
  87. 87.
    T. A. Rosenquist and G. R. Martin. Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev. Dyn. 205:379–386 (1996).PubMedCrossRefGoogle Scholar
  88. 88.
    F. D’Agostini, M. Bagnasco, D. Giunciuglio, A. Albini, and S. De Flora. Inhibition by oral N-acetylcysteine of doxorubicin-induced clastogenicity and alopecia, and prevention of primary tumors and lung micrometastases in mice. Int. J. Oncol. 13:217–224 (1998).PubMedGoogle Scholar
  89. 89.
    J. J. Jimenez, H. S. Haung, and A. A. Yunis. Treatment with ImuVert/N-acetylcysteine protects rats from cyclophosphamide/ cytarabine-induced alopecia. Cancer Invest. 10:271–276 (1992).PubMedGoogle Scholar
  90. 90.
    T. Kobayashi, K. Hashimoto, and K. Yoshikawa. Growth inhibition of human keratinocytes by 1,25-dihydroxyvitamin D3 is linked to dephosphorylation of retinoblastoma gene product. Biochem. Biophys. Res. Commun. 196:487–493 (1993).PubMedCrossRefGoogle Scholar
  91. 91.
    T. Kobayashi, H. Okumura, K. Hashimoto, H. Asada, S. Inui, and K. Yoshikawa. Synchronization of normal human keratinocyte in culture: its application to the analysis of 1,25-dihydroxyvitamin D3 effects on cell cycle. J. Dermatol. Sci. 17:108–114 (1998).PubMedzbMATHCrossRefGoogle Scholar
  92. 92.
    S. E. Blutt, E. A. Allegretto, J. W. Pike, and N. L. Weigel. 1,25-dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology 138:1491–1497 (1997).PubMedCrossRefGoogle Scholar
  93. 93.
    G. Hager, M. Formanek, C. Gedlicka, D. Thurnher, B. Knerer, and J. Kornfehl. 1,25(OH)2 vitamin D3 induces elevated expression of the cell cycle-regulating genes P21 and P27 in squamous carcinoma cell lines of the head and neck. Acta Oto-laryngol. 121:103–109 (2001).CrossRefGoogle Scholar
  94. 94.
    S. Kawa, K. Yoshizawa, M. Tokoo, H. Imai, H. Oguchi, K. Kiyosawa, T. Homma, T. Nikaido, and K. Furihata. Inhibitory effect of 220-oxa-1,25-dihydroxyvitamin D3 on the proliferation of pancreatic cancer cell lines. Gastroenterology 110:1605–1613 (1996).PubMedCrossRefGoogle Scholar
  95. 95.
    J. Kornfehl, M. Formanek, A. Temmel, B. Knerer, and M. Willheim. Antiproliferative effects of the biologically active metabolite of vitamin D3 (1,25 [OH]2 D3) on head and neck squamous cell carcinoma cell lines. Eur. Arch. Oto-rhino-laryngol. 253:341–344 (1996).Google Scholar
  96. 96.
    M. Liu, M. H. Lee, M. Cohen, M. Bommakanti, and L. P. Freedman. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 10:142–153 (1996).PubMedGoogle Scholar
  97. 97.
    J. J. Jimenez and A. A. Yunis. Vitamin D3 and chemotherapy-induced alopecia. Nutrition 12:448–449 (1996).PubMedCrossRefGoogle Scholar
  98. 98.
    J. J. Jimenez and A. A. Yunis. Protection from chemotherapy-induced alopecia by 1,25-dihydroxyvitamin D3. Cancer Res. 52:5123–5125 (1992).PubMedGoogle Scholar
  99. 99.
    J. J. Jimenez, E. Alvarez, C. D. Bustamante, and A. A. Yunis. Pretreatment with 1,25(OH)2D3 protects from Cytoxan-induced alopecia without protecting the leukemic cells from Cytoxan. Am. J. Med. Sci. 310:43–47 (1995).PubMedCrossRefGoogle Scholar
  100. 100.
    R. Paus, M. B. Schilli, B. Handjiski, A. Menrad, B. M. Henz, and P. Plonka. Topical calcitriol enhances normal hair regrowth but does not prevent chemotherapy-induced alopecia in mice. Cancer Res. 56:4438–4443 (1996).PubMedGoogle Scholar
  101. 101.
    Jimenez JJ, Beydoun M, and Yunis AA. 1,25(OH)2D3 protects from Taxol-induced alopecia. Clin. Res. 42:128A (1994).Google Scholar
  102. 102.
    M. Hidalgo, D. Rinaldi, G. Medina, T. Griffin, J. Turner, and D.D. Von Hoff. A phase I trial of topical topitriol (calcitriol, 1,25-dihydroxyvitamin D-3) to prevent chemotherapy-induced alopecia. Anti-Cancer Drugs 10:393–395 (1999).PubMedCrossRefGoogle Scholar
  103. 103.
    M. F. Holick, S. Ray, T. C. Chen, X. Tian, and K. S. Persons. A parathyroid hormone antagonist stimulates epidermal proliferation and hair growth in mice. Proc. Natl. Acad. Sci. USA 91:8014–8016 (1994).PubMedADSCrossRefGoogle Scholar
  104. 104.
    E. M. Peters, K. Foitzik, R. Paus, S. Ray, and M. F. Holick. A new strategy for modulating chemotherapy-induced alopecia, using PTH/PTHrP receptor agonist and antagonist. J. Invest. Dermatol. 117:173–178 (2001).PubMedCrossRefGoogle Scholar
  105. 105.
    V. A. Botchkarev, E. A. Komarova, F. Siebenhaar, N.V. Botchkareva, P.G. Komarov, M. Maurer, B.A. Gilchrest, and A.V. Gudkov. p53 is essential for chemotherapy-induced hair loss. Cancer Res. 60:5002–5006 (2000).PubMedGoogle Scholar
  106. 106.
    V. A. Botchkarev, E. A. Komarova, F. Siebenhaar, N. V. Botchkareva, A. A. Sharov, P. G. Komarov, M. Maurer, A. V. Gudkov, and B. A. Gilchrest. p53 Involvement in the control of murine hair follicle regression. Am. J. Pathol. 158:1913–1919 (2001).PubMedGoogle Scholar
  107. 107.
    V. A. Botchkarev. Molecular mechanisms of chemotherapy-induced hair loss.J. Investig. Dermatol. Symp. Proc. 8:72–75 (2003).PubMedCrossRefGoogle Scholar
  108. 108.
    T. Tsuda, Y. Ohmori, H. Muramatsu, Y. Hosaka, K. Takiguchi, F. Saitoh, K. Kato, K. Nakayama, N. Nakamura, S. Nagata, and H. Mochizuki. Inhibitory effect of M50054, a novel inhibitor of apoptosis, on anti-Fas-antibody-induced hepatitis and chemotherapy-induced alopecia. Eur. J. Pharmacol. 433:37–45 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.College of PharmacyThe Ohio State UniversityColumbusUSA
  2. 2.James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityColumbusUSA
  3. 3.Optimum Therapeutics LLCOSU Science Tech VillageColumbusUSA

Personalised recommendations