Pharmaceutical Research

, Volume 23, Issue 9, pp 1983–1990 | Cite as

Intra- and Inter-ethnic Differences in the Allele Frequencies of Cytochrome P450 2B6 Gene in Chinese

  • Su Guan
  • Min Huang
  • Xin Li
  • Xiao Chen
  • Eli Chan
  • Shu-Feng Zhou
Short Communication



This study aimed to investigate the allele frequencies of CYP2B6 gene in 193 Han Chinese and compared with 91 Uygur Chinese. Five single nucleotide polymorphisms of CYP2B6, 64C>T, 516G>T, 777C>A, 785A>G and 1459C>T, were tested using the polymerase chain reaction–restriction fragment length polymorphism method. The allele frequencies for CYP2B6*2, CYP2B6*3, CYP2B6*4, CYP2B6*5, CYP2B6*6, CYP2B6*7 and CYP2B6*9 in Han and Uygur Chinese were 0.034 and 0.027, 0 and 0.011, 0.091 and 0.033, 0.003 and 0.049, 0.184 and 0.214, 0 and 0.022, and 0.018 and 0.044, respectively, with CYP2B6*4, CYP2B6*5, and CYP2B6*7 being significantly different between these two races (P<0.05). CYP2B6*6 was the most prevalent allele among all detected variants in Han and Uygur Chinese. The most frequent genotypes were CYP2B6*1/CYP2B6*1 (50.8%), CYP2B6*1/CYP2B6*6 (24.4%), and CYP2B6*1/CYP2B6*4 (7.3%) in Han subjects, whereas the most frequent genotypes in Uygur subjects were CYP2B6*1/CYP2B6*1 (36.3%), CYP2B6*1/CYP2B6*6 (25.3%), CYP2B6*1/CYP2B6*5 (5.5%) and CYP2B6*6/CYP2B6*6 (5.5%). The frequencies of 64C>T mutation in Han and Uygur Chinese were significantly lower than that in American Caucasian (P<0.05). These results indicate that there were marked ethnic differences in the mutant frequencies of CYP2B6 between Chinese and other ethnic groups. Further studies are warranted to explore the clinical impact of such ethnic differences.

Key words

Chinese CYP2B6 ethnicity metabolism single nucleotide polymorphism 



confidence interval


polymerase chain reaction


restriction fragment length polymorphism


single nucleotide polymorphism



The authors thank Prof. Zanger, Dr. Kathrin Klein (Dr.Margarete Fischer-Bosch Institut for Klinische Pharmakologie, Stuttgart, Germany), and Prof. Mizugaki, Dr. Masahiro Hiratsuka (Department of Clinical Pharmaceutics Tohoku Pharmaceutical University, Japan) for providing DNA reference samples. This work was supported by the National Nature Science Fund of China (No. 30572231), Guangdong Nature Science Fund (no. 2003: 36622) and the National University of Singapore Academic Research Funds (nos. R-148-000-047-101 and R-148-000-067-112).


  1. 1.
    S. Rendic. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab. Rev. 34:83–448 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Ekins, M. VandenBranden, B. J. Ring, and S. A. Wrighton. Examination of purported probes of human CYP2B6. Pharmacogenetics 7:165–179 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    T. K. Chang, G. F. Weber, C. L. Crespi, and D. J. Waxman. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 53:5629–5637 (1993).PubMedGoogle Scholar
  4. 4.
    J. Wojcikowski, L. Pichard-Garcia, P. Maurel, and W. A. Daniel. Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Br. J. Pharmacol. 138:1465–1474 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    J. G. Gerber, R. J. Rhodes, and J. Gal. Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality 16:36–44 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Oda and E. D. Kharasch. Metabolism of levo-alpha-Acetylmethadol (LAAM) by human liver cytochrome P450: involvement of CYP3A4 characterized by atypical kinetics with two binding sites. J. Pharmacol. Exp. Ther. 297:410–422 (2001).PubMedGoogle Scholar
  7. 7.
    H. Heyn, R. B. White, and J. C. Stevens. Catalytic role of cytochrome P4502B6 in the N-demethylation of S-mephenytoin. Drug Metab. Dispos. 24:948–954 (1996).PubMedGoogle Scholar
  8. 8.
    P. Riska, M. Lamson, T. MacGregor, J. Sabo, S. Hattox, J. Pav, and J. Keirns. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab. Dispos. 27:895–901 (1999).PubMedGoogle Scholar
  9. 9.
    B. A. Ward, J. C. Gorski, D. R. Jones, S. D. Hall, D. A. Flockhart, and Z. Desta. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther. 306:287–300 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    M. H. Court, S. X. Duan, L. M. Hesse, K. Venkatakrishnan, and D. J. Greenblatt. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 94:110–119 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    S. R. Faucette, R. L. Hawke, E. L. Lecluyse, S. S. Shord, B. Yan, R. M. Laethem, and C. M. Lindley. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab. Dispos. 28:1222–1230 (2000).PubMedGoogle Scholar
  12. 12.
    T. L. Domanski, K. M. Schultz, F. Roussel, J. C. Stevens, and J. R. Halpert. Structure–function analysis of human cytochrome P-450 2B6 using a novel substrate, site-directed mutagenesis, and molecular modeling. J. Pharmacol. Exp. Ther. 290:1141–1147 (1999).PubMedGoogle Scholar
  13. 13.
    T. J. Yang, K. W. Krausz, M. Shou, S. K. Yang, J. T. Buters, F. J. Gonzalez, and H. V. Gelboin. Inhibitory monoclonal antibody to human cytochrome P450 2B6. Biochem. Pharmacol. 55:1633–1640 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Gervot, B. Rochat, J. C. Gautier, F. Bohnenstengel, H. Kroemer, V. de Berardinis, H. Martin, P. Beaune, and I. de Waziers. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 9:295–306 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    L. M. Hesse, P. He, S. Krishnaswamy, Q. Hao, K. Hogan, L. L. von Moltke, D. J. Greenblatt, and M. H. Court. Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 14:225–238 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Kim, R. S. Wang, E. Elovaara, H. Raunio, O. Pelkonen, T. Aoyama, H. Vainio, and T. Nakajima. Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica 27:657–665 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Ekins, M. Vandenbranden, B. J. Ring, J. S. Gillespie, T. J. Yang, H. V. Gelboin, and S. A. Wrighton. Further characterization of the expression in liver and catalytic activity of CYP2B6. J. Pharmacol. Exp. Ther. 286:1253–1259 (1998).PubMedGoogle Scholar
  18. 18.
    J. M. Rae, N. V. Soukhova, D. A. Flockhart, and Z. Desta. Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab. Dispos. 30:525–530 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Richter, M. Schwab, M. Eichelbaum, and U. M. Zanger. Inhibition of human CYP2B6 by N,N′,Ná-triethylenethiophosphoramide is irreversible and mechanism-based. Biochem. Pharmacol. 69:517–524 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    U. M. Kent, D. E. Mills, R. V. Rajnarayanan, W. L. Alworth, and P. F. Hollenberg. Effect of 17-alpha-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J. Pharmacol. Exp. Ther. 300:549–558 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    T. Richter, T. E. Murdter, G. Heinkele, J. Pleiss, S. Tatzel, M. Schwab, M. Eichelbaum, and U. M. Zanger. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J. Pharmacol. Exp. Ther. 308:189–197 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    I. Santisteban, S. Povey, E. A. Shephard, and I. R. Phillips. The major phenobarbital-inducible cytochrome P-450 gene subfamily (P450IIB) mapped to the long arm of human chromosome 19. Ann. Hum. Genet. 52(Pt 2):129–135 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Lang, K. Klein, J. Fischer, A. K. Nussler, P. Neuhaus, U. Hofmann, M. Eichelbaum, M. Schwab, and U. M. Zanger. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–415 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    V. Lamba, J. Lamba, K. Yasuda, S. Strom, J. Davila, M. L. Hancock, J. D. Fackenthal, P. K. Rogan, B. Ring, S. A. Wrighton, and E. G. Schuetz. Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J. Pharmacol. Exp. Ther. 307:906–922 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Zukunft, T. Lang, T. Richter, K. I. Hirsch-Ernst, A. K. Nussler, K. Klein, M. Schwab, M. Eichelbaum, and U. M. Zanger. A natural CYP2B6 TATA box polymorphism (-82T–>C) leading to enhanced transcription and relocation of the transcriptional start site. Mol. Pharmacol. 67:1772–1782 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Klein, T. Lang, T. Saussele, E. Barbosa-Sicard, W. H. Schunck, M. Eichelbaum, M. Schwab, and U. M. Zanger. Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet. Genomics 15:861–873 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Wang, A. Sonnerborg, A. Rane, F. Josephson, S. Lundgren, L. Stahle, and M. Ingelman-Sundberg. Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet. Genomics 16:191–198 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    H. Jinno, T. Tanaka-Kagawa, A. Ohno, Y. Makino, E. Matsushima, N. Hanioka, and M. Ando. Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab. Dispos. 31:398–403 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    N. Ariyoshi, M. Miyazaki, K. Toide, Y. Sawamura, and T. Kamataki. A single nucleotide polymorphism of CYP2b6 found in Japanese enhances catalytic activity by autoactivation. Biochem. Biophys. Res. Commun. 281:1256–1260 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Guan, M. Huang, E. Chan, X. Chen, W. Duan, and S.F. Zhou. Genetic polymorphisms of cytochrome P450 2B6 gene in Han Chinese. Eur J Pharm Sci. (in press)Google Scholar
  31. 31.
    S. Yamano, P. T. Nhamburo, T. Aoyama, U. A. Meyer, T. Inaba, W. Kalow, H. V. Gelboin, O. W. McBride, and F. J. Gonzalez. cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: identification of a normal and two variant cDNAs derived from the CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver. Biochemistry 28:7340–7348 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Chomczynski and N. Sacchi. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162:156–159 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    R. G. Newcombe. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 17:857–872 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Hiratsuka, Y. Takekuma, N. Endo, K. Narahara, S. I. Hamdy, Y. Kishikawa, M. Matsuura, Y. Agatsuma, T. Inoue, and M. Mizugaki. Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur. J. Clin. Pharmacol. 58:417–421 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    D. A. Evans, H. L. McLeod, S. Pritchard, M. Tariq, and A. Mobarek. Interethnic variability in human drug responses. Drug Metab. Dispos. 29:606–610 (2001).PubMedGoogle Scholar
  36. 36.
    H. G. Xie, R. B. Kim, A. J. J. Wood, and C. M. Stein. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharmacol. Toxicol. 41:815–850 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    B. Chowbay, S. Zhou, and E. J. Lee. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab. Rev. 37:327–378 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Y. Cho, H. S. Lim, J. Y. Chung, K. S. Yu, J. R. Kim, S. G. Shin, and I. J. Jang. Haplotype structure and allele frequencies of CYP2B6 in a Korean population. Drug Metab. Dispos. 32:1341–1344 (2004).PubMedCrossRefGoogle Scholar
  39. 39.
    D. Burger, I. van der Heiden, C. la Porte, M. van der Ende, P. Groeneveld, C. Richter, P. Koopmans, F. Kroon, H. Sprenger, J. Lindemans, P. Schenk, and R. van Schaik. Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br. J. Clin. Pharmacol. 61:148–154 (2006).PubMedCrossRefGoogle Scholar
  40. 40.
    D. W. Haas, L. M. Smeaton, R. W. Shafer, G. K. Robbins, G. D. Morse, L. Labbe, G. R. Wilkinson, D. B. Clifford, R. T. D'Aquila, V. De Gruttola, R. B. Pollard, T. C. Merigan, M. S. Hirsch, A. L. George Jr., J. P. Donahue, and R. B. Kim. Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult AIDS Clinical Trials Group Study. J. Infect. Dis. 192:1931–1942 (2005).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Rotger, S. Colombo, H. Furrer, G. Bleiber, T. Buclin, B. L. Lee, O. Keiser, J. Biollaz, L. Decosterd, and A. Telenti. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet. Genomics. 15:1–5 (2005).PubMedGoogle Scholar
  42. 42.
    S. Rodriguez-Novoa, P. Barreiro, A. Rendon, I. Jimenez-Nacher, J. Gonzalez-Lahoz, and V. Soriano. Influence of 516G>T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. Clin. Infect. Dis. 40:1358–1361 (2005).PubMedCrossRefGoogle Scholar
  43. 43.
    D. W. Haas, H. J. Ribaudo, R. B. Kim, C. Tierney, G. R. Wilkinson, R. M. Gulick, D. B. Clifford, T. Hulgan, C. Marzolini, and E. P. Acosta. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. Aids 18:2391–2400 (2004).PubMedGoogle Scholar
  44. 44.
    S. M. Yule, A. V. Boddy, M. Cole, L. Price, R. Wyllie, M. J. Tasso, A. D. Pearson, and J. R. Idle. Cyclophosphamide pharmacokinetics in children. Br. J. Clin. Pharmacol. 41:13–19 (1996).PubMedCrossRefGoogle Scholar
  45. 45.
    A. V. Boddy, Y. Furtun, S. Sardas, O. Sardas, and J. R. Idle. Individual variation in the activation and inactivation of metabolic pathways of cyclophosphamide. J. Natl. Cancer. Inst. 84:1744–1748 (1992).PubMedCrossRefGoogle Scholar
  46. 46.
    T. L. Chen, J. L. Passos-Coelho, D. A. Noe, M. J. Kennedy, K. C. Black, O. M. Colvin, and L. B. Grochow. Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res. 55:810–816 (1995).PubMedGoogle Scholar
  47. 47.
    R. Schmidt, F. Baumann, H. Hanschmann, F. Geissler, and R. Preiss. Gender difference in ifosfamide metabolism by human liver microsomes. Eur. J. Drug Metab. Pharmacokinet. 26:193–200 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    H. Wang and M. Negishi. Transcriptional regulation of cytochrome p450 2B genes by nuclear receptors. Curr. Drug Metab. 4:515–525 (2003).PubMedCrossRefGoogle Scholar
  49. 49.
    T. Lang, K. Klein, T. Richter, A. Zibat, R. Kerb, M. Eichelbaum, M. Schwab, and U. M. Zanger. Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J. Pharmacol. Exp. Ther. 311:34–43 (2004).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Spatzenegger, H. Liu, Q. Wang, A. Debarber, D. R. Koop, and J. R. Halpert. Analysis of differential substrate selectivities of CYP2B6 and CYP2E1 by site-directed mutagenesis and molecular modeling. J. Pharmacol. Exp. Ther. 304:477–487 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Clinical Pharmacology, School of Pharmaceutical SciencesSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Pharmacy, the First Affiliated HospitalSun Yat-sen UniversityGuangzhou,People’s Republic of China
  3. 3.Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore

Personalised recommendations