Pharmaceutical Research

, Volume 23, Issue 9, pp 1970–1982 | Cite as

Co-Expression of Vascular Endothelial Growth Factor and Interleukin-1 Receptor Antagonist Improves Human Islet Survival and Function

  • Ajit S. Narang
  • Omaima Sabek
  • Ahmed O. Gaber
  • Ram I. Mahato
Featured Article



Ex vivo gene therapy approaches can improve the outcome of islet transplantation for treating type I diabetes. We have previously shown the improvement in islet function and vascularization following ex vivo transfection for human vascular endothelial growth factor (hVEGF) gene expression. In this study, we tested the hypothesis that co-expression of two genes, which target different challenges faced by islets post-transplantation, supplement each other to improve the survival and function of islets. We determined whether there is an additive effect of hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra) gene expression in human islets.

Materials and Methods

Human islets were co-infected with adenoviral vectors encoding hVEGF and hIL-1Ra. Islets were then incubated with a cocktail of inflammatory cytokines (IL-1β+TNFα+IFNγ), and islet viability and function were determined. In vivo function was evaluated by transplanting islets under the kidney capsules of streptozotocin-induced non-obese diabetic severe combined immunodeficient (NOD-SCID) mice.


Infection of human islets with Adv-hVEGF and/or Adv-hIL-1Ra inhibited expression of inducible nitric oxide synthase (iNOS), decreased the production of nitric oxide (NO), and prevented the loss of in vitro glucose-stimulated insulin response and viability. Moreover, co-expression of hVEGF and hIL-1Ra reduced the blood glucose level of mice, and increased the level of blood insulin and c-peptide upon glucose challenge.


Our results indicated that co-expression of genes that target different insults to transplanted islets can improve the outcome of islet transplantation better than either gene alone.

Key Words

adenovirus diabetes gene therapy interleukin-1 receptor antagonist transplantation vascular endothelial growth factor 





human interleukin-1 receptor antagonist


human vascular endothelial growth factor


inducible nitric oxide synthase


nitric oxide


non-obese diabetic severe combined immunodeficient



We thank Drs. Xiangxu Jia, Raju Penmetsa and Minoru Omori for technical assistance, National Institutes of Health (R01DK069968) and U.S. Public Health Service-National Centre for Research Resources (RR16602) for financial support, and Islet Cell Resource (ICR) Centers for providing human islets.


  1. 1.
    A. M. Shapiro, J. R. Lakey, E. A. Ryan, G. S. Korbutt, E. Toth, G. L. Warnock, N. M. Kneteman, and R. V. Rajotte. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–238 (2000).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Pipeleers, B. Keymeulen, L. Chatenoud, C. Hendrieckx, Z. Ling, C. Mathieu, B. Roep, and D. Ysebaert. A view on beta cell transplantation in diabetes. Ann. N. Y. Acad. Sci. 958:69–76 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Berneyand and C. Ricordi. Islet cell transplantation: the future? Langenbecks Arch. Surg. 385:373–378 (2000).CrossRefGoogle Scholar
  4. 4.
    P. B. Caroll. Anatomy and Physiology of Islets of Langerhans. In C. Ricordi (ed.), Pancreatic Islet Cell Transplantation: 1892–1992 One Century of Transplantation for Diabetes, Landes Bioscience, Georgetown, Texas, 1990, pp. 7–25.Google Scholar
  5. 5.
    A. S. Narang, K. Cheng, J. Henry, C. Zhang, O. Sabek, D. Fraga, M. Kotb, A. O. Gaber, and R. I. Mahato. Vascular endothelial growth factor gene delivery for revascularization in transplanted human islets. Pharm. Res. 21:15–25 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    R. I. Mahato, J. Henry, A. S. Narang, O. Sabek, D. Fraga, M. Kotb, and A. O. Gaber. Cationic lipid and polymer-based gene delivery to human pancreatic islets. Molec. Ther. 7:89–100 (2003).CrossRefGoogle Scholar
  7. 7.
    K. Cheng, D. Fraga, C. Zhang, M. Kotb, A. O. Gaber, R. V. Guntaka, and R. I. Mahato. Adenovirus-based vascular endothelial growth factor gene delivery to human pancreatic islets. Gene Ther. 11:1105–1116 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    A. S. Narang, L. Thoma, D. D. Miller, and R. I. Mahato. Cationic lipids with increased DNA binding affinity for nonviral gene transfer in dividing and nondividing cells. Bioconjug. Chem. 16:156–168 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    N. Zhang, A. Richter, J. Suriawinata, S. Harbaran, J. Altomonte, L. Cong, H. Zhang, K. Song, M. Meseck, J. Bromberg, and H. Dong. Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 53:963–970 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Vajkoczy, A. M. Olofsson, H. A. Lehr, R. Leiderer, F. Hammersen, K. E. Arfors, and M. D. Menger. Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin. Am. J. Pathol. 146:1397–1405 (1995).PubMedGoogle Scholar
  11. 11.
    V. Hadjivassiliou, M. H. Green, R. F. James, S. M. Swift, H. A. Clayton, and I. C. Green. Insulin secretion, DNA damage, and apoptosis in human and rat islets of Langerhans following exposure to nitric oxide, peroxynitrite, and cytokines. Nitric Oxide 2:429–441 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Dobson, D. Fraga, C. Saba, M. Bryer-Ash, A. O. Gaber, and I. C. Gerling. Human pancreatic islets transfected to produce an inhibitor of TNF are protected against destruction by human leukocytes. Cell Transplant 9:857–865 (2000).PubMedGoogle Scholar
  13. 13.
    J. O. Sandberg, D. L. Eizirik, S. Sandler, D. E. Tracey, and A. Andersson. Treatment with an interleukin-1 receptor antagonist protein prolongs mouse islet allograft survival. Diabetes 42:1845–1851 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Gysemans, K. Stoffels, A. Giulietti, L. Overbergh, M. Waer, M. Lannoo, U. Feige, and C. Mathieu. Prevention of primary non-function of islet xenografts in autoimmune diabetic NOD mice by anti-inflammatory agents. Diabetologia 46:1115–1123 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    N. Giannoukakis, W. A. Rudert, S. C. Ghivizzani, A. Gambotto, C. Ricordi, M. Trucco, and P. D. Robbins. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 48:1730–1736 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    J. A. Corbett, M. A. Sweetland, J. L. Wang, J. R. Lancaster, Jr., and M. L. McDaniel. Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc. Natl. Acad. Sci. USA 90:1731–1735 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Arnush, M. R. Heitmeier, A. L. Scarim, M. H. Marino, P. T. Manning, and J. A. Corbett. IL-1 produced and released endogenously within human islets inhibits beta cell function. J. Clin. Invest. 102:516–526 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    D. L. Eizirik, S. Sandler, N. Welsh, M. Cetkovic-Cvrlje, A. Nieman, D. A. Geller, D. G. Pipeleers, K. Bendtzen, and C. Hellerstrom. Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. J. Clin. Invest. 93:1968–1974 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    A. O. Gaber, D. W. Fraga, C. S. Callicutt, I. C. Gerling, O. M. Sabek, and M. Y. Kotb. Improved in vivo pancreatic islet function after prolonged in vitro islet culture. Transplantation 72:1730–1736 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Rodriguez-Muleroand and E. Montanya. Selection of a suitable internal control gene for expression studies in pancreatic islet grafts. Transplantation 80:650–652 (2005).CrossRefGoogle Scholar
  21. 21.
    S. Bertera, A. M. Alexander, M. L. Crawford, G. Papworth, S. C. Watkins, P. D. Robbins, and M. Trucco. Gene combination transfer to block autoimmune damage in transplanted islets of Langerhans. Exp. Diabesity Res. 5:201–210 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    T. B. Mysore, T. A. Shinkel, J. Collins, E. J. Salvaris, N. Fisicaro, L. J. Murray-Segal, L. E. Johnson, D. A. Lepore, S. N. Walters, R. Stokes, A. P. Chandra, P. J. O'Connell, A. J. d'Apice, and P. J. Cowan. Overexpression of glutathione peroxidase with two isoforms of superoxide dismutase protects mouse islets from oxidative injury and improves islet graft function. Diabetes 54:2109–2116 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    V. V. Tran, G. Chen, C. B. Newgard, and H. E. Hohmeier. Discrete and complementary mechanisms of protection of beta-cells against cytokine-induced and oxidative damage achieved by bcl-2 overexpression and a cytokine selection strategy. Diabetes 52:1423–1432 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    M. S. Baker, X. Chen, A. Rotramel, J. Nelson, and D. B. Kaufman. Proinflammatory cytokines induce NF-kappaB-dependent/NO-independent chemokine gene expression in MIN6 beta cells. J. Surg. Res. 110:295–303 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    F. T. Thomas, A. Hutchings, J. Contreras, J. Wu, X. L. Jiang, D. Eckhoff, and J. M. Thomas. Islet transplantation in the twenty-first century. Immunol. Res. 26:289–296 (2002).PubMedCrossRefGoogle Scholar
  26. 26.
    R. I. Mahato, K. Cheng, and R. V. Guntaka. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Exp. Opin. Drug Del. 2:1–26 (2005).CrossRefGoogle Scholar
  27. 27.
    M. J. Kim, G. R. Ryu, J. H. Kang, S. S. Sim, S. Min do, D. J. Rhie, S. H. Yoon, S. J. Hahn, I. K. Jeong, K. J. Hong, M. S. Kim, and Y. H. Jo. Inhibitory effects of epicatechin on interleukin-1beta-induced inducible nitric oxide synthase expression in RINm5F cells and rat pancreatic islets by down-regulation of NF-kappaB activation. Biochem. Pharmacol. 68:1775–1785 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Abdelli, J. Ansite, R. Roduit, T. Borsello, I. Matsumoto, T. Sawada, N. Allaman-Pillet, H. Henry, J. S. Beckmann, B. J. Hering, and C. Bonny. Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes 53:2815–2823 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Liu, D. Pavlovic, M. C. Chen, M. Flodstrom, S. Sandler, and D. L. Eizirik. Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS−/−). Diabetes 49:1116–1122 (2000).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Ylipaasto, K. Klingel, A. M. Lindberg, T. Otonkoski, R. Kandolf, T. Hovi, and M. Roivainen. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    C. A. Delaney, D. Pavlovic, A. Hoorens, D. G. Pipeleers, and D. L. Eizirik. Cytokines induce deoxyribonucleic acid strand breaks and apoptosis in human pancreatic islet cells. Endocrinology 138:2610–2614 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Ajit S. Narang
    • 1
  • Omaima Sabek
    • 2
  • Ahmed O. Gaber
    • 2
  • Ram I. Mahato
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of Tennesee Health Science CenterMemphisUSA
  2. 2.Department of SurgeryUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations