Pharmaceutical Research

, 23:1817

Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro

Research Paper

Purpose

The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro.

Methods

PLGA and an anticancer drug—paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines.

Results

PLGA fibers with diameters of around several tens nanometers to 10 μm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90%. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 μg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol®.

Conclusions

Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.

Key words

electrospinning glioma microfibers nanofibers paclitaxel PLGA 

References

  1. 1.
    Y. Dzenis. Spinning continuous fibers for nanotechnology. Science 304:1917–1919 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Venugopal and S. Ramakrishna. Application of polymer nanofibers in biomedicine and biotechnology. Appl. Biochem. Biotechnol. 125(3):147–158 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J. H. Wendorff. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym. Adv. Technol. 16:276–282 (2005).CrossRefGoogle Scholar
  4. 4.
    B. Chu, B. S. Hsiao, D. Fang, and C. Brathwaite. Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications. US patent 6,689,374 (2004).Google Scholar
  5. 5.
    H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    F. Yang, R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Y. Chew, J. Wen, E. K. F. Yim, K. W. Leong. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017–2024 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release 81:57–64 (2002).CrossRefGoogle Scholar
  9. 9.
    Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, M. Hadjiargyrou. Development of a nanostrucutured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release 89:341–353 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Kim, Y. K. Luu, C. Chang, D. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou. Incorporation and controlled release for a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibers scaffolds. J. Controlled Release 98:47–56 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    E. H. Sanders, R. Kloefkorn, G. L. Bowlin, D. G. Simpson, and G. E. Wnek. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers. Macromolecules 36:3803–3805 (2003).CrossRefGoogle Scholar
  12. 12.
    B. Chu, B. S. Hsiao, M. Hadjiargyrou, D. Fang, X. Zong, and K. Kim. Cell delivery system comprising a fibrous matrix and cells. US Patent 6,790,455 (2004).Google Scholar
  13. 13.
    X. Xu, L. Yang, X. Xu, X. Wang, X. Chen, Q. Liang, J. Zeng, and X. Jing. Ultrafine medicated fibers electrospun from W/O emulsions. J. Control. Release 108(1):33–42 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing. Biodegradable electrospun fibers for drug delivery. J. Control. Release 92:227–231 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen, and X. Jing. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Control. Release 105(1–2):43–51 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    S. C. Steiniger, J. Kreuter, A. S. Khalansky, I. N. Skidan, A. I. Bobruskin, and Z. S. Smimova. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer 109:759–767 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    P. P. Wang, J. Frazier, and H. Brem. Local drug delivery to the brain. Adv. Drug Del. Rev. 54:987–1013 (2002).CrossRefGoogle Scholar
  18. 18.
    M. Westphal, D. C. Hilt, and E. Bortey. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol. 5:79–88 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    J. R. Silber, M. S. Bobola, S. Ghatan, A. Blank, D. D. Kolstoe, and M. S. Berger. O 6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res. 58:1068–1073 (1998).PubMedGoogle Scholar
  20. 20.
    A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. Int. J. Pharm. 235:179–192 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    M. A. Cahan, K. A. Walter, O. M. Colvin, and H. Brem. Cytotoxicity of Taxol in vitro against human and rat malignant brain tumours. Cancer Chemothe. Pharmacol. 33:441–444 (1994).CrossRefGoogle Scholar
  22. 22.
    S. Fellner, B. Bauer, D. S. Miller, M. Schaffrik, M. Fankhanel, T. Spruh, G. Bernhardt, C. Graeff, L. Farber, H. Gschaidmeier, A. Buschsuer, and G. Fricker. Transport of Paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Invest. 10(9):1309–1317 (2002).Google Scholar
  23. 23.
    R. Klecker, C. Jamis-Dow, M. Egorin, K. Erkmen, R. Parker, and J. Collins. Distribution and metabolism of 3H-Taxol in the rat. Proc. Am. Assoc. Cancer Res. 34:380 (1993).Google Scholar
  24. 24.
    J. J. Heimans, J. B. Vermorken, J. G. Wolbers, C. M. Eeltink, O. W. M. Meijer, M. J. B. Taphoorn, and J. H. Beijnen. Paclitaxel (Taxol) concentrations in brain tumor tissue. Ann. Onc. 5:951–953 (1994).Google Scholar
  25. 25.
    K. A. Walter, A. C. Mitchell, A. Gur, B. Tyler, J. Hilton, O. M. Colvin, P. C. Burger, A. Domb, and H. Brem. Interstitial Taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 54:2207–2212 (1994).PubMedGoogle Scholar
  26. 26.
    R. B. Tishler, C. R. Geard, E. J. Hall, and P. B. Schiff. Taxol sensitizes human astrocytoma cells to radiation. Cancer Res. 52:3495–3497 (1992).PubMedGoogle Scholar
  27. 27.
    M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart. Nanostructured fibers via electrospinning. Adv. Mater. 13:70–72 (2001).CrossRefGoogle Scholar
  28. 28.
    S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466 (2002).CrossRefGoogle Scholar
  29. 29.
    I. K. Kwon, S. Kidoaki, and T. Matsuda. Electrospun nano- to microfibers fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929–3939 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    L. Tong, H. Wang, and X. Wang. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375–1381 (2004).CrossRefGoogle Scholar
  31. 31.
    C. Dubernet. Thermoanalysis of microspheres. Thermochimica Acta 248:259–269 (1995).CrossRefGoogle Scholar
  32. 32.
    G. Verreck, I. Chun, J. Peeters, J. Rosenblatt, and M. E. Brewster. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 20(5):810–817 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    O. I. Corrigan. Thermal analysis of spray dried products. Thermochim Acta 248:245–258 (1995).CrossRefGoogle Scholar
  34. 34.
    T. G. Park. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16:1123–1130 (1995).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Domb, Z. H. Israel, O. Elmalak, D. Teomim, and A. Bentolia. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm. Res. 16:762–765 (1999).PubMedCrossRefGoogle Scholar
  36. 36.
    S. A. Azizi and C. Miyamoto. Principles of treatment of malignant gliomas in adults: an overview. J. Neurovirol. 4(2):204–216 (1998).PubMedCrossRefGoogle Scholar
  37. 37.
    P. L. Ritger and N. A. Peppas. A simple equation for description of solute release 1. Fickian and non-Fickian release from nano-swellable devices in the form of slabs, spheres, cylinders or discs. J. Controlled Release 5:23–36 (1987).CrossRefGoogle Scholar
  38. 38.
    J. Xie, J. C. M. Marijnissen, and C. H. Wang. Microparticles developed by electrohydrodynamic atomization (EHDA) for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27:3321–3332 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Molecular Engineering of Biological and Chemical SystemsSingapore-MIT AllianceSingaporeSingapore

Personalised recommendations