Pharmaceutical Research

, Volume 23, Issue 8, pp 1877–1887 | Cite as

Screening of Lipid Carriers and Characterization of Drug-Polymer-Lipid Interactions for the Rational Design of Polymer-Lipid Hybrid Nanoparticles (PLN)

  • Yongqiang Li
  • Nicolas Taulier
  • Andrew M. Rauth
  • Xiao Yu WuEmail author
Research Paper


The thermodynamics and solid state properties of components and their interactions in a formulation for polymer-lipid hybrid nanoparticles (PLN) were characterized for screening lead lipid carriers and rational design of PLN.


Verapamil HCl (VRP) was chosen as a model drug and dextran sulfate sodium (DS) as a counter-ionic polymer. Solubility parameters of VRP, VRP-DS complex, and various lipids were calculated and partition of VRP and VRP-DS in lipids was determined. Thermodynamics of VRP binding to DS was determined by isothermal titration calorimetry (ITC). The solid state properties of individual components and their interactions were characterized using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD).


Dodecanoic acid (DA) was identified as the best lipid carrier among all lipids tested based on the solubility parameters and partition coefficients. VRP-DS complexation was a thermodynamically favorable process. Maximum binding capacity of DS and the highest drug loading capacity of DA were obtained at an equal ionic molar ratio of DS to VRP. In the PLN formulation, DA remained its crystal structure but had a slightly lower melting point, while VRP-DS complex was in an amorphous form.


Drug loading efficiency and capacity of a lipid matrix depend on the VRP-DS binding and the interactions of the complex with the lipid. A combined analysis of solubility parameters and partition coefficients is useful for screening lipid candidates for PLN preparation.

Key words

drug-polymer complex isothermal titration calorimetry partition coefficient polymer-lipid hybrid nanoparticles (PLN) solid lipid nanoparticles solubility parameters 



dodecanoic acid


distilled and deionized


dextran sulfate sodium salt


differential scanning calorimetry


isothermal titration calorimetry


melting point


polymer-lipid hybrid nanoparticles


powder X-ray diffraction


solid lipid nanoparticles


verapamil HCl

VRP-DS complex

the complex of verapamil HCl and dextran sulfate sodium salt



This work was supported by the Canadian Institute of Health Research. The authors would like to thank Dr. Sr. Petrov, Department of Chemistry, University of Toronto, for his comments on the PXRD patterns; Dr. T.V. Chalikian and Dr. Lakshmi P. Kotra for kind permission on use of ITC and a freeze drier, respectively. In addition, the discussion with Ho-lun Wong about SLN, Jubo Liu about solubility parameters and Ms. Feixue Han for help with ITC data fitting; the kind donations of free samples from Gattefossé Inc. (Canada), and the Ontario Graduate Scholarship in Science and Technology (OGSST) to Y. Li are also gratefully acknowledged.


  1. 1.
    R. H. Müller, S. Maaßen, H. Weyhers, F. Specht, and J. S. Lucks. Cytotoxicity of magnetite loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles (SLN). Int. J. Pharm. 138:85–94 (1996).CrossRefGoogle Scholar
  2. 2.
    C. Schwarz, W. Mehnert, J. S. Lucks, and R. H. Müller. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release 30:83–96 (1994).CrossRefGoogle Scholar
  3. 3.
    R. H. Müller, W. Mehnert, J. S. Lucks, C. Schwarz, A. zur Muhlen, H. Weyhers, C. Freitas, and D. Ruhl. Solid lipid nanoparticles (SLN)–an alternative colloidal carrier system for controlled drug delivery. Eur. Pharm. Biopharm. 41:62–69 (1995).Google Scholar
  4. 4.
    S. A. Wissing, O. Kayser, and R. H. Müller. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56:1257–1272 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    W. Mehnert, and K. Mader. Solid lipid nanoparticles, production, characterization and applications. Adv. Drug Deliv. Rev. 47:165–196 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Westesen, H. Bunjes, and M. H. J. Koch. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release. 48:223–236 (1997).CrossRefGoogle Scholar
  7. 7.
    V. Jenning, and S. Gohla. Comparison of wax and glyceride solid lipid nanoparticles (SLN). Int. J. Pharm. 196:219–222 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni, and M. F. Saettone. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm. 117:243–246 (1995).CrossRefGoogle Scholar
  9. 9.
    G. P. Zara, R. Cavalli, A. Fundaro, A. Bargoni, O. Caputo, and M. R. Gasco. Pharmacokinetics of doxorubicin incorporated in solid lipid nanoparticles (SLN). Pharm. Res. 40:281–286 (1999).CrossRefGoogle Scholar
  10. 10.
    R. Cavalli, M. R. Gasco, P. Chetoni, S. Burgalassi, and F. M. Saettone. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm. 238:241–245 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    H. L. Wong, R. Bendayan, A. M. Rauth, and X. Y. Wu. Development of solid lipid nanoparticles containing ionically complexed chemometherapeutic drugs and chemosensitizers. J. Pharm. Sci. 93:1993–2008 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    H. L. Wong, A. M. Rauth, R. Bendayan, and X. Y. Wu. A new solid lipid nanoparticle formulation increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. In press.Google Scholar
  13. 13.
    H. L. Wong. Ph.D. dissertation, University of Toronto, Canada, 2006.Google Scholar
  14. 14.
    R. C. Rowe. Polar/nonpolar interactions in the granulation of organic substrates with polymer binding agents. Int. J. Pharm. 56:117–224 (1989).CrossRefGoogle Scholar
  15. 15.
    D. J. Greenhalgh, A. C. Williams, P. Timmins, and P. York. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 88:1182–1190 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Schenderlein, M. Lück, and B. W. Müller. Partial solubility parameters of poly(d,l-lactide-co-glycolide). Int. J. Pharm. 286:19–26 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    R. H. Müller, K. Mader, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of art. Eur. J. Pharm. Biopharm. 50:161–177 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Bummer. Physical chemical considerations of lipid-based oral drug delivery-solid lipid nanoparticles. Crit. Rev. Therap. Drug Carr. Syst. 21:1–19 (2004).CrossRefGoogle Scholar
  19. 19.
    P. Mura, A. Manderrioli, G. Bramanti, S. Furlanetto, and S. Pinzauti. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int. J. Pharm. 119:71–79 (1995).CrossRefGoogle Scholar
  20. 20.
    G. A. G. Novoa, J. Heinämäki, S. Mirza, O. Antikainen, A. I. Colarte, A. S. Paz, and J. Yliruusi. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate. Eur. J. Pharm. Biopharm. 59:343–350 (2005).CrossRefGoogle Scholar
  21. 21.
    B. Hancock, P. York, and R. C. Rowe. The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 148:1–21 (1997).CrossRefGoogle Scholar
  22. 22.
    J. Barra, P. Bustamante, and E. Doelker. Use of the solubility parameter and surface energy concepts in the formulation of solid dosage forms. S.T.P. Pharm. Sci. 9:293–305 (1999).Google Scholar
  23. 23.
    J. L. Garson. The influence of polarity on the solubility parameter concept. J. Paint Technol. 38:43–57 (1966).Google Scholar
  24. 24.
    R. F. Fedors. A method for estimating both the solubility parameters and molar volumes of liquids. Polymer Engin. Sci. 14:147–154 (1974).CrossRefGoogle Scholar
  25. 25.
    D. W. Van Krevelen. Cohesive properties and solubility. In D.V. Van Krevelen. (ed.), Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contribution. Elsevier, New York, 1990, pp. 189–224.Google Scholar
  26. 26.
    I. Jelesarov, and H. R. Bosshard. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12:3–18 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    C. M. Hansen. The three dimensional solubility parameters—key to paint component affinities. 1. Solvents, plasticizers, polymers and resins. J. Paint Technol. 39:104–117 (1967).Google Scholar
  28. 28.
    R. C. Rowe. Interactions of lubricants with microcrystalline cellulose and anhydrous lactose—a solubility parameter approach. Int. J. Pharm. 41:223–226 (1988).CrossRefGoogle Scholar
  29. 29.
    G. Puglisi, N. A. Santagati, R. Pignatello, C. Ventura, F. A. Bottino, S. Mangiafico, and G. Mazzone. Inclusion complexation of 4-biphenylacetic acid with β-cyclodextrin. Drug Dev. Ind. Pharm. 16:395–413 (1990).CrossRefGoogle Scholar
  30. 30.
    F. Han, N. Taulier, and T. V. Chalikian. Association of the minor groove binding drug Hoechst 33258 with d(CGCGAATTCGCG)2: volumetric, calorimetric, and spectroscopic characterizations. Biochem. 44:9785–9794 (2005).CrossRefGoogle Scholar
  31. 31.
    A. zur Mühlen, C. Schwarz, and W. Mehnert. Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur. J. Pharm. Biopharm. 45:149–155 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Freitas and R. H. Müller. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 47:125–132 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Yongqiang Li
    • 1
  • Nicolas Taulier
    • 1
  • Andrew M. Rauth
    • 2
  • Xiao Yu Wu
    • 1
    Email author
  1. 1.Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada
  2. 2.Experimental TherapeuticsOntario Cancer InstituteTorontoCanada

Personalised recommendations