Pharmaceutical Research

, Volume 23, Issue 8, pp 1765–1775 | Cite as

Applicability of an Ultrasonic Nebulization System for the Airways Delivery of Beclomethasone Dipropionate in a Murine Model of Asthma

  • Boška Hrvačić
  • Berislav Bošnjak
  • Marijan Tudja
  • Milan Mesić
  • Mladen Merćep
Research Paper


We have assessed the use of an ultrasonic nebulization system (UNS), composed of ultrasonic nebulizer and diffusion dryer filled with charcoal, for the effective delivery of beclomethasone to the airways in a murine asthma model.


Solution of beclomethasone in ethanol was aerosolized using an ultrasonic nebulizer. Passage of the aerosol through a drying column containing charcoal and deionizer produced dry beclomethasone particles. Particles were delivered to BALB/c mice placed in a whole-body exposition chamber 1 h before intranasal challenge with ovalbumine. Efficacy of beclomethasone delivery was evaluated by examining bronchoalveolar lavage fluid (BALF) cytology.


Effect of three UNS system parameters on aerosol particle size was investigated. The critical parameter affecting the size of dry particles was beclomethasone concentration in aerosolized solution and solution flow rate while power level of ultrasonic nebulizer generator had no effect. Administration of beclomethasone at calculated dose of 150 μg/kg to mice significantly decreased total cell number and relative eosinophil number in BALF.


The UNS system produces a monodisperse aerosol that can be used for inhalative delivery of poorly water soluble substances to experimental animals. The UNS system minimizes formulation requirements and allows rapid and relatively simple efficacy and toxicity testing in animals.

Key words

asthma beclomethasone dipropionate dry powder inhalation delivery mice ultrasonic nebulization system 



bronchoalveolar lavage fluid


beclomethasone dipropionate


chronic obstructive pulmonary disease


dry powder inhaler

FPF(<2.20 μm)

fine particle fraction <2.20 μm aerodynamic diameter


geometric standard deviation


pressurized metered-dose inhaler


standard deviation


ultrasonic nebulization system



This work was supported by PLIVA Research Institute, Inc. Authors wish to thank dr. Michael J. Parnham for critical reading of the manuscript. Authors also wish to thank Ms. Anica Pešut and Milka Horvatinčić and Mr. Željko Osman for their excellent technical assistance.


  1. 1.
    A. A. Arif, G. L. Delclos, E. S. Lee, S. R. Tortolero, and L. W. Whitehead. Prevalence and risk factors of asthma and wheezing among US adults: an analysis of the NHANES III data. Eur. Respir. J. 21:827–833 (2003).PubMedGoogle Scholar
  2. 2.
    D. M. Mannino, D. M. Homa, C. A. Pertowski, A. Ashizawa, L. L. Nixon, C. A. Johnson, L. B. Ball, E. Jack, and D. S. Kang. Surveillance for asthma—United States, 1960–1995. MMWR CDC Surveill. Summ. 47:1–27 (1998).PubMedGoogle Scholar
  3. 3.
    N. Pearce, J. Sunyer, S. Cheng, S. Chinn, B. Bjorksten, M. Burr, U. Keil, H. R. Anderson, and P. Burney. Comparison of asthma prevalence in the ISAAC and the ECRHS. ISAAC Steering Committee and the European Community Respiratory Health Survey. International Study of Asthma and Allergies in Childhood. Eur. Respir. J. 16:420–426 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    R. J. Halbert, S. Isonaka, D. George, and A. Iqbal. Interpreting COPD prevalence estimates: what is the true burden of disease? Chest 123:1684–1692 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Newman, and S. Clarke. Aerosols in medicine: principles, diagnosis and therapy. In F. Moren, M. Newhouse, and M. Dolovich (eds), Aerosol in Therapy, Elsevier, Amsterdam, 1985.Google Scholar
  6. 6.
    T. J. Clark. Effect of beclomethasone dipropionate delivered by aerosol in patients with asthma. Lancet 1:1361–1364 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    A. D. Perera, C. Kapitza, L. Nosek, R. S. Fishman, D. A. Shapiro, T. Heise, and L. Heinemann. Absorption and metabolic effect of inhaled insulin: intrapatient variability after inhalation via the Aerodose insulin inhaler in patients with type 2 diabetes. Diabetes Care 25:2276–2281 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    J. B. Fink. Aerosol device selection: evidence to practice. Respir. Care 45:874–885 (2000).PubMedGoogle Scholar
  9. 9.
    M. P. Timsina, G. P. Martin, C. Marriott, D. Ganderton, and M. Yianneskis. Drug delivery to the respiratory tract using dry powder inhalers. Int. J. Pharm. 101:1–13 (1994).CrossRefGoogle Scholar
  10. 10.
    S. Suarez, and A. J. Hickey. Drug properties affecting aerosol behavior. Respir. Care 45:652–666 (2000).PubMedGoogle Scholar
  11. 11.
    P. K. Gupta, and A. J. Hickey. Contemporary approaches in aerosolized drug delivery to the lung. J. Control. Release 17:127–147 (1991).CrossRefGoogle Scholar
  12. 12.
    P. Atkins, and A. R. Clark. Drug delivery to the respiratory tract and drug dosimetry. J. Aerosol Med. 7:33–38 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    M. F. Biddiscombe, R. Melchor, V. H. F. Mak, R. J. Marriot, A. J. Taylor, M. D. Short, and S. G. Spiro. The deposition of salbutamol, directly labelled with technetium-99m, delivered by pressurised metered and dry powder inhalers. Int. J. Pharm. 91:111–121 (1993).CrossRefGoogle Scholar
  14. 14.
    T. J. Huang, P. Eynott, M. Salmon, P. L. Nicklin, and K. F. Chung. Effect of topical immunomodulators on acute allergic inflammation and bronchial hyperresponsiveness in sensitised rats. Eur. J. Pharmacol. 437:187–194 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Fujitani, and A. Trifilieff. In vivo and in vitro effects of SAR 943, a rapamycin analogue, on airway inflammation and remodeling. Am. J. Respir. Crit. Care Med. 167:193–198 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    K. E. Driscoll, D. L. Costa, G. Hatch, R. Henderson, G. Oberdorster, H. Salem, and R. B. Schlesinger. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol. Sci. 55:24–35 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Miller-Larsson, H. Mattsson, E. Hjertberg, M. Dahlback, A. Tunek, and R. Brattsand. Reversible fatty acid conjugation of budesonide. Novel mechanism for prolonged retention of topically applied steroid in airway tissue. Drug Metab. Dispos. 26:623–630 (1998).PubMedGoogle Scholar
  18. 18.
    J. L. Rau. The inhalation of drugs: advantages and problems. Respir. Care 50:367–382 (2005).PubMedGoogle Scholar
  19. 19.
    J. C. Ijsebaert, K. B. Geerse, J. C. Marijnissen, J. W. Lammers, and P. Zanen. Electro-hydrodynamic atomization of drug solutions for inhalation purposes. J. Appl. Physiol. 91:2735–2741 (2001).PubMedGoogle Scholar
  20. 20.
    P. J. Barnes, and T. T. Hansel. The need for new therapy. In T. T. Hansel and P. J. Barnes (eds), New Drugs for Asthma, Allergy and COPD, Vol. 31, Progress in respiratory research, Krager, Basel, 2001, pp. 2–5.CrossRefGoogle Scholar
  21. 21.
    L. W. Wattenberg, T. S. Wiedmann, R. D. Estensen, C. L. Zimmerman, A. R. Galbraith, V. E. Steele, and G. J. Kelloff. Chemoprevention of pulmonary carcinogenesis by brief exposures to aerosolized budesonide or beclomethasone dipropionate and by the combination of aerosolized budesonide and dietary myo-inositol. Carcinogenesis 21:179–182 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    L. W. Wattenberg, T. S. Wiedmann, R. D. Estensen, C. L. Zimmerman, V. E. Steele, and G. J. Kelloff. Chemoprevention of pulmonary carcinogenesis by aerosolized budesonide in female A/J mice. Cancer Res. 57:5489–5492 (1997).PubMedGoogle Scholar
  23. 23.
    S. Pham, and T. S. Wiedmann. Analysis of a diffusion dryer for the respiratory delivery of poorly water soluble drugs. Pharm. Res. 16:1857–1863 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    T. S. Wiedmann, and A. Ravichandran. Ultrasonic nebulization system for respiratory drug delivery. Pharm. Dev. Technol. 6:83–89 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Pham, and T. S. Wiedmann. Production of aerosol particles from organic solutions for respiratory delivery to animals. Pharm. Res. 14:S133 (1997).Google Scholar
  26. 26.
    S. W. Stein, P. B. Myrdal, B. J. Gabrio, D. Obereit, and T. J. Beck. Evaluation of a new Aerodynamic Particle Sizer Spectrometer for size distribution measurements of solution metered dose inhalers. J. Aerosol Med. 16:107–119 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    J. P. Mitchell, M. W. Nagel, K. J. Wiersema, and C. C. Doyle. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 Aerodynamic Particle Sizer aerosol spectrometer. AAPS PharmSciTech 4:E54 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    A. C. Guyton. The measurements of the respiratory values of laboratory animals. Am. J. Physiol. 150:70–78 (1942).Google Scholar
  29. 29.
    J. Broadhead, S. K. Rouan, and C. T. Rhodes. The spray drying of pharmaceuticals. Drug Dev. Ind. Pharm. 18:1169–1206 (1992).CrossRefGoogle Scholar
  30. 30.
    D. B. Warheitand, and M. A. Hartsky. Species comparisons of proximal alveolar deposition patterns of inhaled particulates. Exp. Lung Res. 16:83–99 (1990).CrossRefGoogle Scholar
  31. 31.
    R. B. Schlesinger. Comparative deposition of inhaled aerosols in experimental animals and humans: a review. J. Toxicol. Environ. Health 15:197–214 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Synek, R. Beasley, A. J. Frew, D. Goulding, L. Holloway, F. C. Lampe, W. R. Roche, and S. T. Holgate. Cellular infiltration of the airways in asthma of varying severity. Am. J. Respir. Crit. Care Med. 154:224–230 (1996).PubMedGoogle Scholar
  33. 33.
    M. L. Bartoli, E. Bacci, S. Carnevali, S. Cianchetti, F. L. Dente, A. Di Franco, D. Giannini, M. Taccola, B. Vagaggini, and P. L. Paggiaro. Clinical assessment of asthma severity partially corresponds to sputum eosinophilic airway inflammation. Respir. Med. 98:184–193 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    W. W. Busse, W. F. Calhoun, and J. D. Sedgwick. Mechanism of airway inflammation in asthma. Am. Rev. Respir. Dis. 147:S20–S24 (1993).PubMedGoogle Scholar
  35. 35.
    J. Bousquet, P. Chanez, J. Y. Lacoste, G. Barneon, N. Ghavanian, I. Enander, P. Venge, S. Ahlstedt, J. Simony-Lafontaine, P. Godard, and et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323:1033–1039 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Pham, and T. S. Wiedmann. Note: dissolution of aerosol particles of budesonide in Survanta, a model lung surfactant. J. Pharm. Sci. 90:98–104 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    Operating instrutions for ultrasonic atomizing nozzle systems v1.2, Sono-Tek Co., 2001.Google Scholar
  38. 38.
    J. D. Brain, and P. A. Valberg. Deposition of aerosol in the respiratory tract. Am. Rev. Respir. Dis. 120:1325–1373 (1979).PubMedGoogle Scholar
  39. 39.
    P. Zanen, L. T. Go, and J. W. Lammers. The efficacy of a low-dose, monodisperse parasympathicolytic aerosol compared with a standard aerosol from a metered-dose inhaler. Eur. J. Clin. Pharmacol. 54:27–30 (1998).PubMedCrossRefGoogle Scholar
  40. 40.
    P. Zanen, and J. W. Lammers. Reducing adverse effects of inhaled fenoterol through optimization of the aerosol formulation. J. Aerosol Med. 12:241–247 (1999).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Holt, A. Suder, M. Weatherall, S. Cheng, P. Shirtcliffe, and R. Beasley. Dose-response relation of inhaled fluticasone propionate in adolescents and adults with asthma: meta-analysis. BMJ 323:253–256 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    H. Powell, and P. G. Gibson. Inhaled corticosteroid doses in asthma: an evidence-based approach. Med. J. Aust. 178:223–225 (2003).PubMedGoogle Scholar
  43. 43.
    S. R. Moores, A. Black, B. E. Lambert, P. J. Lindop, A. Morgan, J. Pritchard, and M. Walsh. Deposition of thorium and plutonium oxides in the respiratory tract of the mouse. In S. L. Sanders, F. T. Cross, G. E. Dagle, and J. A. Mahaffey (eds), Proceedings of the Nineteenth Annual Hanford Life Sciences Symposium, Technical Information Center, Department of Energy, Washington, District of Columbia, 1980, pp. 103–118.Google Scholar
  44. 44.
    C. J. Roy, M. Hale, J. M. Hartings, L. Pitt, and S. Duniho. Impact of inhalation exposure modality and particle size on the respiratory deposition of ricin in BALB/c mice. Inhal. Toxicol. 15:619–638 (2003).PubMedCrossRefGoogle Scholar
  45. 45.
    I. Soria, L. I. Harrison, J. H. Machacek, A. C. Cline, and P. A. Stampone. Beclomethasone relative availability of oral versus inhaled beclomethasone dipropionate from an HFA-134A metered dose inhaler. Biopharm. Drug Dispos. 19:297–302 (1998).PubMedCrossRefGoogle Scholar
  46. 46.
    L. E. Martin, C. Harrison, and R. J. Tanner. Metabolism of beclomethasone dipropionate by animals and man. Postgrad. Med. J. 51(Suppl 4):11–20 (1975).PubMedGoogle Scholar
  47. 47.
    F. Chanoine, C. Grenot, P. Heidmann, and J. L. Junien. Pharmacokinetics of butixocort 21-propionate, budesonide, and beclomethasone dipropionate in the rat after intratracheal, intravenous, and oral treatments. Drug Metab. Dispos. 19:546–553 (1991).PubMedGoogle Scholar
  48. 48.
    H. Kuss, N. Hoefgen, S. Johanssen, T. Kronbach, and C. Rundfeldt. In vivo efficacy in airway disease models of N-(3,5-dichloropyrid-4-yl)-[1-(4-fluorobenzyl)-5-hydroxy-indole-3-yl]-glyo xylic acid amide (AWD 12-281), a selective phosphodiesterase 4 inhibitor for inhaled administration. J. Pharmacol. Exp. Ther. 307:373–385 (2003).PubMedCrossRefGoogle Scholar
  49. 49.
    R. E. Wiley, M. Cwiartka, D. Alvarez, D. C. Mackenzie, J. R. Johnson, S. Goncharova, L. Lundblad, and M. Jordana. Transient corticosteroid treatment permanently amplifies the Th2 response in a murine model of asthma. J. Immunol. 172:4995–5005 (2004).PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Boška Hrvačić
    • 1
  • Berislav Bošnjak
    • 1
  • Marijan Tudja
    • 2
  • Milan Mesić
    • 1
  • Mladen Merćep
    • 1
  1. 1.PLIVA Research Institute Ltd.ZagrebCroatia
  2. 2.PLIVA Croatia Ltd.ZagrebCroatia

Personalised recommendations