Pharmaceutical Research

, Volume 23, Issue 8, pp 1641–1658 | Cite as

Pharmacokinetics and Pharmacodynamics of Nonsteroidal Androgen Receptor Ligands

  • Wenqing Gao
  • Juhyun Kim
  • James T. DaltonEmail author
Expert Review


Testosterone and structurally related anabolic steroids have been used to treat hypogonadism, muscle wasting, osteoporosis, male contraception, cancer cachexia, anemia, and hormone replacement therapy in aging men or age-related frailty; while antiandrogens may be useful for treatment of conditions like acne, alopecia (male-pattern baldness), hirsutism, benign prostatic hyperplasia (BPH) and prostate cancer. However, the undesirable physicochemical and pharmacokinetic properties of steroidal androgen receptor (AR) ligands limited their clinical use. Nonsteroidal AR ligands with improved pharmacological and pharmacokinetic properties have been developed to overcome these problems. This review focuses on the pharmacokinetics, metabolism, and pharmacology of clinically used and emerging nonsteroidal AR ligands, including antagonists, agonists, and selective androgen receptor modulators.

Key Words

androgen receptor antiandrogen pharmacokinetics prostate cancer selective androgen receptor modulator testosterone 


  1. 1.
    W. Gao, C. E. Bohl, and J. T. Dalton. Chemistry and structural biology of androgen receptor. Chem. Rev. 105:3352–3370 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    R. C. Buijsman, P. H. Hermkens, R. D. van Rijn, H. T. Stock, and N. M. Teerhuis. Non-steroidal steroid receptor modulators. Curr. Med. Chem. 12:1017–1075 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Chen, J. Kim, and J. T. Dalton. Discovery and therapeutic promise of selective androgen receptor modulators. Mol. Interv. 5:173–188 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Venturoli, O. Marescalchi, F. M. Colombo, S. Macrelli, B. Ravaioli, A. Bagnoli, R. Paradisi, and C. Flamigni. A prospective randomized trial comparing low dose flutamide, finasteride, ketoconazole, and cyproterone acetate-estrogen regimens in the treatment of hirsutism. J. Clin. Endocrinol. Metab. 84:1304–1310 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    E. T. Keller, W. B. Ershler, and C. Chang. The androgen receptor: a mediator of diverse responses. Front Biosci. 1:d59–d71 (1996).PubMedGoogle Scholar
  6. 6.
    L. S. Goodman, J. G. Hardman, L. E. Limbird, and A. G. Gilman. Goodman & Gilman's the Pharmacological Basis of Therapeutics. McGraw-Hill Medical Pub. Division, New York, 2001.Google Scholar
  7. 7.
    K. L. Johansen. Testosterone metabolism and replacement therapy in patients with end-stage renal disease. Semin. Dial. 17:202–208 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Oettel. Testosterone metabolism, dose-response relationships and receptor polymorphisms: selected pharmacological/toxicological considerations on benefits versus risks of testosterone therapy in men. Aging Male 6:230–256 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Oettel. Is there a role for estrogens in the maintenance of men's health? Aging Male 5:248–257 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    W. de Ronde, H. A. Pols, J. P. van Leeuwen, and F. H. de Jong. The importance of oestrogens in males. Clin. Endocrinol. (Oxf) 58:529–542 (2003).CrossRefGoogle Scholar
  11. 11.
    E. Barrett-Connor, D. Goodman-Gruen, and B. Patay. Endogenous sex hormones and cognitive function in older men. J. Clin. Endocrinol. Metab. 84:3681-3685 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    I. Van Pottelbergh, L. Braeckman, D. De Bacquer, G. De Backer, and J. M. Kaufman. Differential contribution of testosterone and estradiol in the determination of cholesterol and lipoprotein profile in healthy middle-aged men. Atherosclerosis 166:95–102 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    T. K. Mukherjee, H. Dinh, G. Chaudhuri, and L. Nathan. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc. Natl. Acad. Sci. USA 99:4055–4060 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Toda, T. Okada, K. Takeda, S. Akira, T. Saibara, M. Shiraishi, S. Onishi, and Y. Shizuta. Oestrogen at the neonatal stage is critical for the reproductive ability of male mice as revealed by supplementation with 17beta-oestradiol to aromatase gene (Cyp19) knockout mice. J. Endocrinol. 168:455–463 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Falahati-Nini, B. L. Riggs, E. J. Atkinson, W. M. O'Fallon, R. Eastell, and S. Khosla. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106:1553–1560 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    E. S. Orwoll. Men, bone and estrogen: unresolved issues. Osteoporos. Int. 14:93–98 (2003).PubMedGoogle Scholar
  17. 17.
    A. E. Thigpen, R. I. Silver, J. M. Guileyardo, M. L. Casey, J. D. McConnell, and D. W. Russell. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J. Clin. Invest 92:903–910 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    A. M. Isidori, E. A. Greco, and A. Aversa. Androgen deficiency and hormone-replacement therapy. BJU Int. 96:212–216 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Fang, W. Tong, W. S. Branham, C. L. Moland, S. L. Dial, H. Hong, Q. Xie, R. Perkins, W. Owens, and D. M. Sheehan. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem. Res. Toxicol. 16:1338–1358 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    W. R. Kelce, E. Monosson, M. P. Gamcsik, S. C. Laws, and L. E. Gray, Jr. Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol. Appl. Pharmacol. 126:276–285 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    C. L. Waller, B. W. Juma, L. E. Gray, Jr., and W. R. Kelce. Three-dimensional quantitative structure–activity relationships for androgen receptor ligands. Toxicol. Appl. Pharmacol. 137:219–227 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    A. E. Wakeling, B. J. Furr, A. T. Glen, and L. R. Hughes. Receptor binding and biological activity of steroidal and nonsteroidal antiandrogens. J. Steroid Biochem. 15:355–359 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Schulz, A. Schmoldt, F. Donn, and H. Becker. The pharmacokinetics of flutamide and its major metabolites after a single oral dose and during chronic treatment. Eur. J. Clin. Pharmacol. 34:633–636 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    B. Katchen and S. Buxbaum. Disposition of a new, nonsteroid, antiandrogen, alpha,alpha,alpha-trifluoro-2-methyl-4′-nitro-m-propionotoluidide (Flutamide), in men following a single oral 200 mg dose. J. Clin. Endocrinol. Metab. 41:373–379 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Fau, D. Eugene, A. Berson, P. Letteron, B. Fromenty, C. Fisch, and D. Pessayre. Toxicity of the antiandrogen flutamide in isolated rat hepatocytes. J. Pharmacol. Exp. Ther. 269:954–962 (1994).PubMedGoogle Scholar
  26. 26.
    P. J. Creaven, L. Pendyala, and D. Tremblay. Pharmacokinetics and metabolism of nilutamide. Urology 37:13–19 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Berson, C. Wolf, V. Berger, D. Fau, C. Chachaty, B. Fromenty, and D. Pessayre. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide. J. Pharmacol. Exp. Ther. 257:714–719 (1991).PubMedGoogle Scholar
  28. 28.
    D. Fau, A. Berson, D. Eugene, B. Fromenty, C. Fisch, and D. Pessayre. Mechanism for the hepatotoxicity of the antiandrogen, nilutamide. Evidence suggesting that redox cycling of this nitroaromatic drug leads to oxidative stress in isolated hepatocytes. J. Pharmacol. Exp. Ther. 263:69–77 (1992).PubMedGoogle Scholar
  29. 29.
    I. D. Cockshott. Bicalutamide: clinical pharmacokinetics and metabolism. Clin. Pharmacokinet. 43:855–878 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    G. W. Boyle, D. McKillop, P. J. Phillips, J. R. Harding, R. Pickford, and A. D. McCormick. Metabolism of Casodex in laboratory animals. Xenobiotica 23:781–798 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    D. McKillop, G. W. Boyle, I. D. Cockshott, D. C. Jones, P. J. Phillips, and R. A. Yates. Metabolism and enantioselective pharmacokinetics of Casodex in man. Xenobiotica 23:1241–1253 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Schellhammer, R. Sharifi, N. Block, M. Soloway, P. Venner, A. L. Patterson, M. Sarosdy, N. Vogelzang, J. Jones, and G. Kolvenbag. A controlled trial of bicalutamide versus flutamide, each in combination with luteinizing hormone-releasing hormone analogue therapy, in patients with advanced prostate cancer. Casodex Combination Study Group. Urology 45:745–752 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    B. J. Furr and H. Tucker. The preclinical development of bicalutamide: pharmacodynamics and mechanism of action. Urology 47:13–25; discussion 29–32 (1996).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Lefort, M. Diaz Curiel, M. T. Carrascal, C. Mendez-Davila, and C. de la Piedra. Comparative effects of bicalutamide (Casodex) versus orchidectomy on bone mineral density, bone remodelling, and bone biomechanics in healthy rats. Urol. Int. 74:301–307 (2005).PubMedCrossRefGoogle Scholar
  35. 35.
    T. Battmann, C. Branche, F. Bouchoux, E. Cerede, D. Philibert, F. Goubet, G. Teutsch, and M. Gaillard-Kelly. Pharmacological profile of RU 58642, a potent systemic antiandrogen for the treatment of androgen-dependent disorders. J. Steroid Biochem. Mol. Biol. 64:103–111 (1998).PubMedCrossRefGoogle Scholar
  36. 36.
    M. E. Taplin, B. Rajeshkumar, S. Halabi, C. P. Werner, B. A. Woda, J. Picus, W. Stadler, D. F. Hayes, P. W. Kantoff, N. J. Vogelzang, and E. J. Small. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J. Clin. Oncol. 21:2673–2678 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Suzuki, K. Akakura, A. Komiya, S. Aida, S. Akimoto, and J. Shimazaki. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 29:153–158 (1996).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Hara, J. Miyazaki, H. Araki, M. Yamaoka, N. Kanzaki, M. Kusaka, and M. Miyamoto. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63:149–153 (2003).PubMedGoogle Scholar
  39. 39.
    T. Yoshida, H. Kinoshita, T. Segawa, E. Nakamura, T. Inoue, Y. Shimizu, T. Kamoto, and O. Ogawa. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res. 65:9611–9616 (2005).PubMedCrossRefGoogle Scholar
  40. 40.
    M. E. Salvati, M. Gottardis, S. R. Krystek, R. M. Attar, and J. Sack. Selective androgen receptor modulators and methods for their identification, design, and use, Patent WO0200617, 2002.Google Scholar
  41. 41.
    M. E. Salvati, A. Balog, W. Shan, D. D. Wei, D. Pickering, R. M. Attar, J. Geng, C. A. Rizzo, M. M. Gottardis, R. Weinmann, S. R. Krystek, J. Sack, Y. An, and K. Kish. Structure based approach to the design of bicyclic-1H-isoindole-1,3(2H)-dione based androgen receptor antagonists. Bioorg. Med. Chem. Lett. 15:271–276 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    M. E. Van Dort and Y. W. Jung. Synthesis and structure–activity studies of side-chain derivatized arylhydantoins for investigation as androgen receptor radioligands. Bioorg. Med. Chem. Lett. 11:1045–1047 (2001).PubMedCrossRefGoogle Scholar
  43. 43.
    T. Battmann, A. Bonfils, C. Branche, J. Humbert, F. Goubet, G. Teutsch, and D. Philibert. RU 58841, a new specific topical antiandrogen: a candidate of choice for the treatment of acne, androgenetic alopecia and hirsutism. J. Steroid Biochem. Mol. Biol. 48:55–60 (1994).PubMedCrossRefGoogle Scholar
  44. 44.
    D. Cousty-Berlin, B. Bergaud, M. C. Bruyant, T. Battmann, C. Branche, and D. Philibert. Preliminary pharmacokinetics and metabolism of novel non-steroidal antiandrogens in the rat: relation of their systemic activity to the formation of a common metabolite. J. Steroid Biochem. Mol. Biol. 51:47–55 (1994).PubMedCrossRefGoogle Scholar
  45. 45.
    L. G. Hamann, R. I. Higuchi, L. Zhi, J. P. Edwards, X. N. Wang, K. B. Marschke, J. W. Kong, L. J. Farmer, and T. K. Jones. Synthesis and biological activity of a novel series of nonsteroidal, peripherally selective androgen receptor antagonists derived from 1,2-dihydropyridono[5,6-g]quinolines. J. Med. Chem. 41:623–639 (1998).PubMedCrossRefGoogle Scholar
  46. 46.
    L. Zhi and E. Martinborough. Selective androgen receptor modulators (SARMs). Annual Reports of Medicinal Chemistry 36:169–180 (2001).Google Scholar
  47. 47.
    A. Negro-Vilar. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J. Clin. Endocrinol. Metab. 84:3459–3462 (1999).PubMedCrossRefGoogle Scholar
  48. 48.
    L. G. Hamann, N. S. Mani, R. L. Davis, X. N. Wang, K. B. Marschke, and T. K. Jones. Discovery of a potent, orally active, nonsteroidal androgen receptor agonist: 4-ethyl-1,2,3,4-tetrahydro-6-(trifluoromethyl)-8-pyridono[5,6-g]-quinoline (LG121071). J. Med. Chem. 42:210–212 (1999).PubMedCrossRefGoogle Scholar
  49. 49.
    J. Rosen and A. Negro-Vilar. Novel, non-steroidal, selective androgen receptor modulators (SARMs) with anabolic activity in bone and muscle and improved safety profile. J. Musculoskelet. Neuronal. Interact. 2:222–224 (2002).PubMedGoogle Scholar
  50. 50.
    C. E. Bohl, C. Chang, M. L. Mohler, J. Chen, D. D. Miller, P. W. Swaan, and J. T. Dalton. A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor. J. Med. Chem. 47:3765–3776 (2004).PubMedCrossRefGoogle Scholar
  51. 51.
    L. Zhi, C. M. Tegley, K. B. Marschke, and T. K. Jones. Switching androgen receptor antagonists to agonists by modifying C-ring substituents on piperidino[3,2-g]quinolinone. Bioorg. Med. Chem. Lett. 9:1009–10012 (1999).PubMedCrossRefGoogle Scholar
  52. 52.
    D. Yin, W. Gao, J. D. Kearbey, H. Xu, K. Chung, Y. He, C. A. Marhefka, K. A. Veverka, D. D. Miller, and J. T. Dalton. Pharmacodynamics of selective androgen receptor modulators. J. Pharmacol. Exp. Ther. 304:1334–1340 (2003).PubMedCrossRefGoogle Scholar
  53. 53.
    W. Gao, J. D. Kearbey, V. A. Nair, K. Chung, A. F. Parlow, D. D. Miller, and J. T. Dalton. Comparison of the pharmacological effects of a novel selective androgen receptor modulator, the 5alpha-reductase inhibitor finasteride, and the antiandrogen hydroxyflutamide in intact rats: new approach for benign prostate hyperplasia. Endocrinology 145:5420–5428 (2004).PubMedCrossRefGoogle Scholar
  54. 54.
    W. Gao, P. J. Reiser, C. C. Coss, M. A. Phelps, J. D. Kearbey, D. D. Miller, and J. T. Dalton. Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats. Endocrinology 146:4887–4897 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    J. D. Kearbey, W. Gao, D. D. Miller, and J. T. Dalton. Selective androgen receptor modulators inhibit bone resorption in rats. AAPS PharmSci. 5:(2003).Google Scholar
  56. 56.
    J. Chen, D. J. Hwang, C. E. Bohl, D. D. Miller, and J. T. Dalton. A selective androgen receptor modulator for hormonal male contraception. J. Pharmacol. Exp. Ther. 312:546–553 (2005).PubMedCrossRefGoogle Scholar
  57. 57.
    J. Kim, D. Wu, D. J. Hwang, D. D. Miller, and J. T. Dalton. The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-prop ionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators. J. Pharmacol. Exp. Ther. 315:230–239 (2005).PubMedCrossRefGoogle Scholar
  58. 58.
    J. D. Kearbey, D. Wu, W. Gao, D. D. Miller, and J. T. Dalton. Pharmacokinetics of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide in rats, a non-steroidal selective androgen receptor modulator. Xenobiotica 34:273–280 (2004).PubMedCrossRefGoogle Scholar
  59. 59.
    W. Gao, J. S. Johnston, D. D. Miller, and J. T. Dalton. Inter-Species Differences in Pharmacokinetics and Metabolism of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide: the role of N-Acetyltransferase. Drug. Metab. Dispos. (2005).Google Scholar
  60. 60.
    W. Gao, Z. Wu, C. E. Bohl, J. Yang, D. D. Miller, and J. T. Dalton. Characterization of the in vitro metabolism of selective androgen receptor modulator (SARM) using human, rat and dog liver enzyme preparations. Drug Metab. Dispos. (2005).Google Scholar
  61. 61.
    W. Gao, Z. Wu, K. Chung, D. D. Miller, and J. T. Dalton. Phase I Metabolism Study of Selective Androgen Receptor Modulators (SARMs) with human liver microsomes. AAPS PharmSci. 5 (2003).Google Scholar
  62. 62.
    D. Yin, Y. He, M. A. Perera, S. S. Hong, C. Marhefka, N. Stourman, L. Kirkovsky, D. D. Miller, and J. T. Dalton. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. Mol. Pharmacol. 63:211–223 (2003).PubMedCrossRefGoogle Scholar
  63. 63.
    J. Chen, D. J. Hwang, K. Chung, C. E. Bohl, S. J. Fisher, D. D. Miller, and J. T. Dalton. In vitro and in vivo structure–activity relationships of novel androgen receptor ligands with multiple substituents in the B-ring. Endocrinology 146:5444–5454 (2005).PubMedCrossRefGoogle Scholar
  64. 64.
    C. A. Marhefka, W. Gao, K. Chung, J. Kim, Y. He, D. Yin, C. Bohl, J. T. Dalton, and D. D. Miller. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators. J. Med. Chem. 47:993–998 (2004).PubMedCrossRefGoogle Scholar
  65. 65.
    C. E. Bohl, D. D. Miller, J. Chen, C. E. Bell, and J. T. Dalton. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J. Biol. Chem. 280:37747–37754 (2005).PubMedCrossRefGoogle Scholar
  66. 66.
    C. E. Bohl, W. Gao, D. D. Miller, C. E. Bell, and J. T. Dalton. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl. Acad. Sci. USA 102:6201–6206 (2005).PubMedCrossRefGoogle Scholar
  67. 67.
    L. G. Hamann. Discovery and preclinical profile of a highly potent and muscle selective androgen receptor modulator (SARM). 227th National Meeting of the American Chemical Society Medicinal Chemistry Division (2004).Google Scholar
  68. 68.
    K. Hanada, K. Furuya, N. Yamamoto, H. Nejishima, K. Ichikawa, T. Nakamura, M. Miyakawa, S. Amano, Y. Sumita, and N. Oguro. Bone anabolic effects of S-40503, a novel nonsteroidal selective androgen receptor modulator (SARM), in rat models of osteoporosis. Biol. Pharm. Bull. 26:1563–1569 (2003).PubMedCrossRefGoogle Scholar
  69. 69.
    M. Miyakawa, N. Oguro, K. Hanada, K. Furuya, and N. Yamamoto. Preparation of novel tetrahydroquinoline derivatives as androgen receptor agonists, Patent WO 2004013104, 2004.Google Scholar
  70. 70.
    H. Gronemeyer, J. A. Gustafsson, and V. Laudet. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3:950–964 (2004).PubMedCrossRefGoogle Scholar
  71. 71.
    C. L. Smith and B. W. O'Malley. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25:45–71 (2004).PubMedCrossRefGoogle Scholar
  72. 72.
    B. S. Katzenellenbogen and J. A. Katzenellenbogen. Biomedicine. Defining the “S” in SERMs. Science 295:2380–2381 (2002).PubMedCrossRefGoogle Scholar
  73. 73.
    R. G. Christiansen, M. R. Bell, T. E. D'Ambra, J. P. Mallamo, J. L. Herrmann, J. H. Ackerman, C. J. Opalka, R. K. Kullnig, R. C. Winneker, and B. W. Snyder et al. Antiandrogenic steroidal sulfonylpyrazoles. J. Med. Chem. 33:2094–2100 (1990).PubMedCrossRefGoogle Scholar
  74. 74.
    I. D. Cockshott, G. F. Plummer, K. J. Cooper, and M. J. Warwick. The pharmacokinetics of Casodex in laboratory animals. Xenobiotica 21:1347–1355 (1991).PubMedGoogle Scholar
  75. 75.
    J. P. Edwards, R. I. Higuchi, T. K. Jones, and L. G. Hamann. Androgen receptor modulator compounds and methods, Patent US6017924, Ligand Pharmaceuticals Incorporated, United States, 2000.Google Scholar
  76. 76.
    G. F. Allan, and Z. Sui. Therapeutic androgen receptor ligands. NURSA e-Journal 1: ID# 3.09172003.1 (2003).Google Scholar
  77. 77.
    L. Zhi, C. M. Tegley, B. Pio, V. O. C. Arjan, M. Motamedi, E. Martinborough, S. West, R. I. Higuchi, L. G. Hamann, and L. J. Farmer. Bicyclic androgen and progesterone receptor modulator compounds and methods, Patent WO0116108, 2001.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Division of Pharmaceutics, College of PharmacyThe Ohio State UniversityColumbusUSA
  2. 2.ColumbusUSA
  3. 3.GTx, Inc.MemphisUSA

Personalised recommendations