Pharmaceutical Research

, Volume 23, Issue 10, pp 2393–2404 | Cite as

Investigation of the Multi-Step Dehydration Reaction of Theophylline Monohydrate Using 2-Dimensional Powder X-ray Diffractometry

  • Cletus Nunes
  • Arumugam Mahendrasingam
  • Raj Suryanarayanan
Special Issue


(i) To study the dehydration kinetics of theophylline monohydrate using 2-dimensional (2D) powder X-ray diffractometry (XRD), and (ii) to investigate the effect of polyvinylpyrrolidone (PVP) on the dehydration pathway and kinetics.


Theophylline monohydrate (C7H8N4O2·H2O; M) was recrystallized from aqueous PVP solutions of different concentrations. Dehydration kinetics was studied isothermally, at several temperatures, from 35 to 130°C. The experimental set-up comprised of a high intensity X-ray source (synchrotron radiation or 8 kW rotating anode), a heating chamber, and a 2D area detector. Diffraction patterns were collected continuously, with a time resolution ranging from 40 ms to 30 s, over the angular range of 3 to 27°2θ.


Dehydration of M resulted in either the stable (C7H8N4O2; A), or the metastable anhydrate (A*), with the latter having a tendency to transform to A. The XRD technique allowed simultaneous quantification of M, A* and A during the dehydration reaction. The rate constants for individual reaction steps (MA*; MA and A*→A) were determined by fitting the data to solid-state reaction models. In presence of PVP, there was a decrease in the magnitude of the rate constant associated with the MA transition, resulting in an increased build-up of A* in the product. The inhibitory effect of PVP on MA transition was more pronounced at lower dehydration temperatures, and was proportional to the concentration of PVP.


Two dimensional powder X-ray diffractometry, using a high intensity source, is a powerful technique to study kinetics of rapid solid-state reactions. The inhibitory effect of excipients can have profound effect on phases formed during pharmaceutical processing.

Key words

anhydrate dehydration metastable polymorph synchrotron theophylline monohydrate two-dimensional X-ray diffraction 


  1. 1.
    D. J. Sutor. The structures of the pyrimidines and purines. VI. The crystal structure of theophylline. Acta Crystallogr. 11:83–87 (1958).CrossRefGoogle Scholar
  2. 2.
    C. Sun, D. Zhou, D. J. W. Grant, and V. G. Young, Jr. Theophylline monohydrate. Acta Crystallogr. E58:368–370 (2002).Google Scholar
  3. 3.
    A. A. Naqvi and G. C. Bhattacharyya. Crystal data for anhydrous theophylline. J. Appl. Crystallogr. 14:464 (1981).CrossRefGoogle Scholar
  4. 4.
    C. Agbada and P. York. Dehydration of theophylline monohydrate powder: effects of particle size and sample weight. Int. J. Pharm. 106:33–40 (1994).CrossRefGoogle Scholar
  5. 5.
    C. T. Lin and S. R. Byrn. Desolvations of solvated organic crystals. Molr. Cryst. Liq. Cryst. 50:99–104 (1979).Google Scholar
  6. 6.
    M. Otsuka, N. Kaneniwa, K. Kawakami, and O. Umezawa. Effect of surface characteristics of theophylline anhydrate powder on hygroscopic stability. J. Pharm. Pharmacol. 42:606–610 (1990).PubMedGoogle Scholar
  7. 7.
    M. Otsuka, N. Kaneniwa, K. Kawakami, and O. Umezawa. Effects of tableting pressure on hydration kinetics of theophylline anhydrate tablets. J. Pharm. Pharmacol. 43:226–231 (1991).PubMedGoogle Scholar
  8. 8.
    E. Shefter, H.-L. Fung, and O. Mok. Dehydration of crystalline theophylline monohydrate and ampicillin trihydrate. J. Pharm. Sci. 62:791–794 (1973).PubMedGoogle Scholar
  9. 9.
    E. Suihko, J. Ketolainen, A. Poso, M. Ahhlgren, J. Gynther, and P. Paronen. Dehydration of theophylline monohydrate—a two step process. Int. J. Pharm. 158:47–55 (1997).CrossRefGoogle Scholar
  10. 10.
    S. P. Duddu, N. G. Das, T. P. Kelly, and T. D. Sokoloski. Microcalorimetric investigation of phase transitions. I. Is water desorption from theophylline.HOH a single-step process? Int. J. Pharm. 114:247–256 (1995).CrossRefGoogle Scholar
  11. 11.
    M. T. Ledwidge and O. I. Corrigan. Effects of environmental factors on the dehydration of diclofenac HEP dihydrate and theophylline monohydrate. Int. J. Pharm. 147:41–49 (1997).CrossRefGoogle Scholar
  12. 12.
    N. V. Phadnis and R. Suryanarayanan. Polymorphism in anhydrous theophylline—implications for the dissolution rate of theophylline tablets. J. Pharm. Sci. 86:1256–1263 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Suihko, V. P. Lehto, J. Ketolainen, E. Laine, and P. Paronen. Dynamic solid-state and tableting properties of four theophylline forms. Int. J. Pharm. 217:225–236 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    ICH (International Conference on Harmonisation). Draft guidance on Q6A specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances. Federal Register 65(251):83041–83063 (2000).Google Scholar
  15. 15.
    Process analytical technology—a framework for innovative pharmaceutical manufacturing and quality assurance. Draft guidance. U.S. Department of Health and Human Services. Food and Drug Administration. Federal Register 68(172):52781–52782 (2003).Google Scholar
  16. 16.
    K. R. Morris, U. J. Griesser, C. J. Eckhardt, and J. G. Stowell. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv. Drug Deliv. Rev. 48:91–114 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian. Pharmaceutical solids: a strategic approach to regulatory considerations. Pharm. Res. 12:945–954 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    S. R. Byrn, W. Xu, and A. W. Newman. Chemical reactivity in solid-state pharmaceuticals: formulation implications. Adv. Drug Deliv. Rev. 48:115–136 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    S. K. Rastogi, M. Zakrzewski, and R. Suryanarayanan. Investigation of solid-state reactions using variable temperature X-ray powder diffractometry. II. Aminophylline monohydrate. Pharm. Res. 19:1265–1273 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Giron. Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Themochim. Acta 348:1–59 (1995).CrossRefGoogle Scholar
  21. 21.
    D. Giron. Characterization of pharmaceuticals by thermal analysis. Am. Pharm. Rev. 3:53–54, 56, 58–61 (2000).Google Scholar
  22. 22.
    H. P. Klug and L. E. Alexander. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley, New York, 1974.Google Scholar
  23. 23.
    R. Suryanarayanan. X-ray powder diffractometry. In H. G. Brittain (ed.), Physical Characterization of Pharmaceutial Solids, Marcel Dekker, New York, 1995, pp. 187–221.Google Scholar
  24. 24.
    M. Otsuka, N. Kaneniwa, K. Otsuka, K. Kawakami, and O. Umezawa. Effect of tableting pressure and geometrical factor of tablet on dehydration kinetics of theophylline monohydrate tablets. Drug Dev. Ind. Pharm. 19:541–557 (1993).Google Scholar
  25. 25.
    M. Karjalainen, S. Airaksinen, J. Rantanen, J. Aaltonen, and J. Yliruusi. Characterization of polymorphic solid-state changes using variable temparature X-ray powder diffraction. J. Pharm. Biomed. Anal. 39:27–32 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Airaksinen, M. Karjalainen, E. Rasanen, J. Rantanen, and J. Yliruusi. Comparison of the effects of two drying methods on polymorphism of theophylline. Int. J. Pharm. 276:129–141 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Tank. Changes in Solid-State of Theophylline upon Wet Granulation, M.S. dissertation, Department of Pharmaceutics, University of Minnesota, 1997.Google Scholar
  28. 28.
    M. Yoshioka, B. C. Hancock, and G. Zografi. Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J. Pharm. Sci. 84:983–986 (1995).PubMedGoogle Scholar
  29. 29.
    R. L. Larkin and R. E. Kupel. Quantitative analysis of poly(vinylpyrrolidinone) atmosphere samples and biological tissues. Am. Ind. Hyg. Assoc. J. 26:558–561 (1965).PubMedGoogle Scholar
  30. 30.
    G. B. Levy and D. Fergus. Microdetermination of polyvinylpyrrolidone in aqueous solution and in body fluids. Anal. Chem. 25:1408–1410 (1953).CrossRefGoogle Scholar
  31. 31.
    M. Savva, V. P. Torchilin, and L. Huang. Effect of polyvinylpyrrolidone on the thermal phase transition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer. J. Colloid Interface Sci. 217:160–165 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Nunes. Use of High-Intensity X-radiation in Solid-State Characterization of Pharmaceuticals, Ph.D. dissertation, Department of Pharmaceutics, University of Minnesota, 2005.Google Scholar
  33. 33.
    C. Nunes, A. Mahendrasingam, and R. Suryanarayanan. Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm. Res. 22:1942–1953 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    Powder Diffraction File-2. International Centre for Diffraction Data. Newtown Square, Pennsylvania, 1996.Google Scholar
  35. 35.
    J. H. Sharp, G. W. Brindley, and B. N. N. Achar. Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 49:379–382 (1966).CrossRefGoogle Scholar
  36. 36.
    D. C. Monkhouse and L. Van Campen. Solid state reactions—theoretical and experimental aspects. Drug Dev. Ind. Pharm. 10:1175–1276 (1984).Google Scholar
  37. 37.
    E. Suzuki, K. Shimomura, and K. Sekiguchi. Thermochemical study of theophylline and its hydrate. Chem. Pharm. Bull. 37:493–497 (1989).Google Scholar
  38. 38.
    W. J. Dunning. Theory of crystal nucleation from vapour, liquid and solid systems. In W. E. Garner (ed.), Chemistry of the Solid State, Academic, New York, 1955, pp. 159–183.Google Scholar
  39. 39.
    Y. V. Mnyukh. Molecular mechanism of polymorphic transitions. Molr. Cryst. Liq. Cryst. 52:467–503 (1979).Google Scholar
  40. 40.
    Y. V. Mnyukh. Polymorphic transitions in crystals: Nucleation. J. Cryst. Growth 32:371–377 (1976).CrossRefGoogle Scholar
  41. 41.
    Y. V. Mnyukh and N. N. Petropavlov. Polymorphic transitions in molecular crystals. I. Orientations of lattices and interfaces. J. Phys. Chem. Solids 33:2079–2087 (1972).Google Scholar
  42. 42.
    F. C. Tompkins. Decomposition reactions. In N. B. Hannay (ed.), Reactivity of Solids, Plenum, New York, 1976, pp. 193–232.Google Scholar
  43. 43.
    H. Schmalzried. Solid-state reactions. In N. B. Hannay (ed.), Reactivity of Solids, Plenum, New York, 1976, pp. 233–280.Google Scholar
  44. 44.
    A. K. Galwey. The reactivity of solids in thermal decomposition (crystolysis) reactions. In V. V. Boldyrev (ed.), Reactivity of Solids: Past, Present and Future, Blackwell Science, Malden, Massachusetts, 1996, pp. 15–42.Google Scholar
  45. 45.
    L. S. Taylor and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1698 (1997).PubMedCrossRefGoogle Scholar
  46. 46.
    K. Khougaz and S.-D. Clas. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J. Pharm. Sci. 89:1325–1334 (2000).PubMedCrossRefGoogle Scholar
  47. 47.
    T. Matsumoto and G. Zografi. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm. Res. 16:1722–1728 (1999).PubMedCrossRefGoogle Scholar
  48. 48.
    E. D. L. Smith, R. B. Hammond, M. J. Jones, K. J. Roberts, J. B. O. Mitchell, S. L. Price, R. K. Harris, D. C. Apperley, J. C. Cherryman, and R. Docherty. The determination of the crystal structure of anhydrous theophylline by X-ray powder diffraction with a systematic search algorithm, lattice energy calculations, and 13C and 15N solid-state NMR: a question of polymorphism in a given unit cell. J. Phys. Chem. B. 105:5818–5826 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Cletus Nunes
    • 1
    • 2
  • Arumugam Mahendrasingam
    • 3
  • Raj Suryanarayanan
    • 1
  1. 1.Department of PharmaceuticsUniversity of MinnesotaMinneapolisUSA
  2. 2.Pharmaceutics R&DBristol Myers Squibb CompanyNew BrunswickUSA
  3. 3.Department of PhysicsKeele UniversityStaffordshireUK

Personalised recommendations