Pharmaceutical Research

, Volume 23, Issue 8, pp 1696–1701 | Cite as

Molecular Cloning, Functional Characterization and Tissue Distribution of Rat H+/Organic Cation Antiporter MATE1

  • Tomohiro Terada
  • Satohiro Masuda
  • Jun-ichi Asaka
  • Masahiro Tsuda
  • Toshiya Katsura
  • Ken-ichi Inui
Short Communication

Purpose

Transport characteristics and tissue distribution of the rat H+/organic cation antiporter MATE1 (multidrug and toxin extrusion 1) were examined.

Methods

Rat MATE1 cDNA was isolated by polymerase chain reaction (PCR) cloning. Transport characteristics of rat MATE1 were assessed by HEK293 cells transiently expressing rat MATE1. The mRNA expression of rat MATE1 was examined by Northern blot and real-time PCR analyses.

Results

The uptake of a prototypical organic cation tetraethylammonium (TEA) by MATE1-expressing cells was concentration-dependent, and showed the greatest value at pH 8.4 and the lowest at pH 6.0–6.5. Intracellular acidification induced by ammonium chloride resulted in a marked stimulation of TEA uptake. MATE1 transported not only organic cations such as cimetidine and metformin but also the zwitterionic compound cephalexin. MATE1 mRNA was expressed abundantly in the kidney and placenta, slightly in the spleen, but not expressed in the liver. Real-time PCR analysis of microdissected nephron segments showed that MATE1 was primarily expressed in the proximal convoluted and straight tubules.

Conclusions

These findings indicate that MATE1 is expressed in the renal proximal tubules and can mediate the transport of various organic cations and cephalexin using an oppositely directed H+ gradient.

Key Words

H+/organic cation antiporter kidney MATE1 renal secretion 

References

  1. 1.
    J. B. Pritchard and D. S. Miller. Mechanisms mediating renal secretion of organic anions and cations. Physiol. Rev. 73:765–796 (1993).PubMedGoogle Scholar
  2. 2.
    K. Inui and M. Okuda. Cellular and molecular mechanisms of renal tubular secretion of organic anions and cations. Clin. Exp. Nephrol. 2:100–108 (1998).CrossRefGoogle Scholar
  3. 3.
    K. Inui, S. Masuda, and H. Saito. Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 58:944–958 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    B. C. Burckhardt and G. Burckhardt. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 146:95–158 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Koepsell and H. Endou. The SLC22 drug transporter family. Pflügers Arch. 447:666–676 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Otsuka, T. Matsumoto, R. Morimoto, S. Arioka, H. Omote, and Y. Moriyama. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA 102:17923–17928 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Takano, K. Inui, T. Okano, H. Saito, and R. Hori. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles. Biochim. Biophys. Acta 773:113–124 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Inui, M. Takano, T. Okano, and R. Hori. H+ gradient-dependent transport of aminocephalosporins in rat renal brush border membrane vesicles: role of H+/organic cation antiport system. J. Pharmacol. Exp. Ther. 233:181–185 (1985).PubMedGoogle Scholar
  9. 9.
    M. Takano, K. Inui, T. Okano, and R. Hori. Cimetidine transport in rat renal brush border and basolateral membrane vesicles. Life Sci. 37:1579–1585 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Hori, H. Maegawa, T. Okano, M. Takano, and K. Inui. Effect of sulfhydryl reagents on tetraethylammonium transport in rat renal brush border membranes. J. Pharmacol. Exp. Ther. 241:1010–1016 (1987).PubMedGoogle Scholar
  11. 11.
    H. Maegawa, M. Kato, K. Inui, and R. Hori. pH sensitivity of H+/organic cation antiport system in rat renal brush-border membranes. J. Biol. Chem. 263:11150–11154 (1988).PubMedGoogle Scholar
  12. 12.
    T. Katsura, H. Maegawa, Y. Tomita, M. Takano, K. Inui, and R. Hori. Trans-stimulation effect on H+-organic cation antiport system in rat renal brush-border membranes. Am. J. Physiol. 261:F774–F778 (1991).PubMedGoogle Scholar
  13. 13.
    Y. Urakami, M. Akazawa, H. Saito, M. Okuda, and K. Inui. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J. Am. Soc. Nephrol. 13:1703–1710 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Terada, M. Irie, M. Okuda, and K. Inui. Genetic variant Arg57His in human H+/peptide cotransporter 2 causes a complete loss of transport function. Biochem. Biophys. Res. Commun. 316:416–420 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Ueo, H. Motohashi, T. Katsura, and K. Inui. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem. Pharmacol. 70:1104–1113 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Musfeld, J. Biollaz, N. Belaz, U. W. Kesselring, and L. A. Decosterd. Validation of an HPLC method for the determination of urinary and plasma levels of N1-methylnicotinamide, an endogenous marker of renal cationic transport and plasma flow. J. Pharm. Biomed. Anal. 24:391–404 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Saito, M. Okuda, T. Terada, S. Sasaki, and K. Inui. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in the intestine and kidney. J. Pharmacol. Exp. Ther. 275:1631–1637 (1995).PubMedGoogle Scholar
  18. 18.
    H. Motohashi, Y. Sakurai, H. Saito, S. Masuda, Y. Urakami, M. Goto, A. Fukatsu, O. Ogawa, and K. Inui. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13:866–874 (2002).PubMedGoogle Scholar
  19. 19.
    S. Masuda, H. Saito, H. Nonoguchi, K. Tomita, and K. Inui. mRNA distribution and membrane localization of the OAT-K1 organic anion transporter in rat renal tubules. FEBS Lett. 407:127–131 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Urakami, M. Okuda, S. Masuda, M. Akazawa, H. Saito, and K. Inui. Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm. Res. 18:1528–1534 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    A. W. Jans, K. Amsler, B. Griewel, and R. K. Kinne. Regulation of intracellular pH in LLC-PK1 cells studied using 31P-NMR spectroscopy. Biochim. Biophys. Acta 927:203–212(1987).PubMedCrossRefGoogle Scholar
  22. 22.
    S. H. Wright and T. M. Wunz. Transport of tetraethylammonium by rabbit renal brush-border and basolateral membrane vesicles. Am. J. Physiol. 253:F1040–F1050 (1987).PubMedGoogle Scholar
  23. 23.
    C. Rafizadeh, F. Roch-Ramel, and C. Schali. Tetraethylammonium transport in renal brush border membrane vesicles of the rabbit. J. Pharmacol. Exp. Ther. 240:308–313 (1987).PubMedGoogle Scholar
  24. 24.
    T. D. McKinney and M. E. Kunnemann. Cimetidine transport in rabbit renal cortical brush-border membrane vesicles. Am. J. Physiol. 252:F525–F535 (1987).PubMedGoogle Scholar
  25. 25.
    L. Gisclon, F. M. Wong, and K. M. Giacomini. Cimetidine transport in isolated luminal membrane vesicles from rabbit kidney. Am. J. Physiol. 253:F141–F150 (1987).PubMedGoogle Scholar
  26. 26.
    P. D. Holohan and C. R. Ross. Mechanisms of organic cation transport in kidney plasma membrane vesicles. 2. ΔpH studies. J. Pharmacol. Exp. Ther. 216:294–298 (1981).PubMedGoogle Scholar
  27. 27.
    T. D. McKinney and M. E. Kunnemann. Procainamide transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 249:F532–F541 (1985).PubMedGoogle Scholar
  28. 28.
    K. Inui, H. Saito, and R. Hori. H+-gradient-dependent active transport of tetraethylammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK1. Biochem. J. 227:199–203 (1985).PubMedGoogle Scholar
  29. 29.
    H. Saito, M. Yamamoto, K. Inui, and R. Hori. Transcellular transport of organic cation across monolayers of kidney epithelial cell line LLC-PK1. Am. J. Physiol. 262:C59–C66 (1992).PubMedGoogle Scholar
  30. 30.
    M. Takano, M. Kato, A. Takayama, M. Yasuhara, K. Inui, and R. Hori. Transport of procainamide in a kidney epithelial cell line LLC-PK1. Biochim. Biophys. Acta 1108:133–139 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    J. K. Chun, L. Zhang, M. Piquette-Miller, E. Lau, L. Q. Tong, and K. M. Giacomini. Characterization of guanidine transport in human renal brush border membranes. Pharm. Res. 14:936–941 (1997).PubMedCrossRefGoogle Scholar
  32. 32.
    R. H. Moseley, J. Morrissette, and T. R. Johnson. Transport of N 1-methylnicotinamide by organic cation-proton exchange in rat liver membrane vesicles. Am. J. Physiol. 259:G973–G982 (1990).PubMedGoogle Scholar
  33. 33.
    V. Ganapathy, M. E. Ganapathy, C. N. Nair, V. B. Mahesh, and F. H. Leibach. Evidence for an organic cation-proton antiport system in brush-border membranes isolated from the human term placenta. J. Biol. Chem. 263:4561–4568 (1988).PubMedGoogle Scholar
  34. 34.
    K. Yoshitomi and E. Fromter. Cell pH of rat renal proximal tubule in vivo and the conductive nature of peritubular HCO3− (OH) exit. Pflügers Arch. 402:300–305 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Tomohiro Terada
    • 1
  • Satohiro Masuda
    • 1
  • Jun-ichi Asaka
    • 1
  • Masahiro Tsuda
    • 1
  • Toshiya Katsura
    • 1
  • Ken-ichi Inui
    • 1
  1. 1.Department of PharmacyKyoto University HospitalKyotoJapan

Personalised recommendations