Pharmaceutical Research

, Volume 23, Issue 7, pp 1482–1490

Culture of Calu-3 Cells at the Air Interface Provides a Representative Model of the Airway Epithelial Barrier

  • Christopher I. Grainger
  • Leona L. Greenwell
  • David J. Lockley
  • Gary P. Martin
  • Ben Forbes
Research Paper

Purpose

The aim of this study was to compare the effect of liquid-covered culture (LCC) and air-interfaced culture (AIC) on Calu-3 cell layer morphology and permeability, thus assessing the fitness of these culture systems as models of airway epithelium barrier function.

Methods

Cell layers were grown on 0.33 cm2 Transwell polyester cell culture supports. Cell layers grown using LCC and AIC were evaluated by using light and electron microscopy, transepithelial electrical resistance (TER), and permeability to the transepithelial flux of fluorescein sodium (flu-Na), and by varying molecular weight dextrans labeled with fluorescein isothiocyanate (FITC-dex). The tight junction protein, zona occludens protein-1 (ZO-1), was visualized by confocal microscopy and apical glycoprotein secretions were identified by using alcian blue.

Results

Cells grown via AIC produced a more columnar epithelium with a more rugged apical topography and greater glycoprotein secretion compared to cells grown via LCC. Apical protrusions appearing to be cilia-like structures were observed on occasional cells using AIC, but typical airway ciliated cell phenotypes were not produced under either condition. Secretory granules were observed in cells cultured under both conditions. Cells cultured using LCC exhibited higher levels of ZO-1 protein than the AIC counterpart. The maximal TER of cells using LCC, 1,086 ± 113 Ω cm2 at 11–16 days, was significantly greater than the TER of cells cultured using AIC, 306 ± 53 Ω cm2 at 11–13 days. Apparent permeability (Papp) values for the transport of flu-Na using LCC and AIC were 1.48 ± 0.19×10−7 and 3.36 ± 0.47×10−7 cm s−1, respectively. Transport rates of flu-Na and FITC-dex were inversely proportional to molecular weight, and were significantly lower (p < 0.05) in cell layers grown using LCC than AIC. Renkin analysis fitted the data to single pore populations of radii 7.7 and 11.0 nm for LCC and AIC, respectively.

Conclusion

Distinct differences in morphology and permeability result when Calu-3 cells are grown using AIC or LCC. Cells cultured using AIC generate a model more morphologically representative of the airway epithelium than cells cultured using LCC.

Key words

drug delivery permeability respiratory cell culture toxicology 

Abbreviations

A

surface area of filter insert (cm2)

AIC

air-interfaced culture

C

initial concentration (μg/mL)

D

diffusion coefficient (cm2/s)

F

flux (rate of change in cumulative mass transported) (μg/s)

FITC-dex

fluorescein isothiocyanate labeled dextran

flu-Na

fluorescein-sodium salt

LCC

liquid-covered culture

Papp

apparent permeability (cm/s)

ri

molecular radius of solute (nm)

rp

molecular radius of pore (nm)

TER

transepithelial resistance (Ω cm2)

ZO-1

zona occludens protein-1

ɛ/L

ratio of pore area to length

References

  1. 1.
    Borchard, G. 2002Calu-3 cells, a valid model for the airway epithelium?STP Pharma Sci.12205211Google Scholar
  2. 2.
    Ehrhardt, C., Fiegel, J., Fuchs, S., Abu-Dahab, R., Schaefer, U. F., Hanes, J., Lehr, C. M. 2002Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriersJ. Aerosol Med.15131139PubMedCrossRefGoogle Scholar
  3. 3.
    Florea, B. I., Cassara, M. L., Junginger, H. E., Borchard, G. 2003Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3J. Control. Release87131138PubMedCrossRefGoogle Scholar
  4. 4.
    Shen, R. Q., Finkbeiner, W. E., Wine, J. J., Mrsny, R. J., Widdicombe, J. H. 1994Calu-3—a human airway epithelial-cell line that shows Camp-dependent Cl- secretionAm. J. Phys.266L493L501Google Scholar
  5. 5.
    Foster, K. A., Avery, M. L., Yazdanian, M., Audus, K. L. 2000Characterization of the Calu-3 cell line as a tool to screen pulmonary drug deliveryInt. J. Pharm.208111PubMedCrossRefGoogle Scholar
  6. 6.
    Forbes, B., Ehrhardt, C. 2005Human respiratory epithelial cell culture for drug delivery applicationsEur. J. Pharm. Biopharm.60193205PubMedCrossRefGoogle Scholar
  7. 7.
    Florea, B. I., Thanou, M., Junginger, H. E., Borchard, G. 2006Enhancement of bronchial octreotide absorption by chitosan and N-trimethyl chitosan shows linear in vitro/in vivo correlationJ. Control. Release110353361PubMedCrossRefGoogle Scholar
  8. 8.
    Geys, J., Coenegrachts, L., Vercammen, J., Engelborghs, Y., Nemmar, A., Nemery, B., Hoet, P. H. 2006In vitro study of the pulmonary translocation of nanoparticles: a preliminary studyToxicol. Lett.160218226PubMedCrossRefGoogle Scholar
  9. 9.
    Sachs, L. A., Finkbeiner, W. E., Widdicombe, J. H. 2003Effects of media on differentiation of cultured human tracheal epitheliumIn Vitro Cell. Dev. Biol., Anim.395662CrossRefGoogle Scholar
  10. 10.
    Widdicombe, J. H., Sachs, L. A., Finkbeiner, W. E. 2003Effects of growth surface on differentiation of cultures of human tracheal epitheliumIn Vitro Cell. Dev. Biol., Anim.395155CrossRefGoogle Scholar
  11. 11.
    Dejong, P. M., Vansterkenburg, M. A. J. A., Kempenaar, J. A., Dijkman, J. H., Ponec, M. 1993Serial culturing of human bronchial epithelial-cells derived from biopsiesIn Vitro Cell. Dev. Biol., Anim.29A379387Google Scholar
  12. 12.
    Johnson, L. G., Dickman, K. G., Moore, K. L., Mandel, L. J., Boucher, R. C. 1993Enhanced Na+ transport in an air–liquid interface culture systemAm. J. Physiol264L560L565PubMedGoogle Scholar
  13. 13.
    Yamaya, M., Finkbeiner, W. E., Chun, S. Y., Widdicombe, J. H. 1992Differentiated structure and function of cultures from human tracheal epitheliumAm. J. Physiol262L713L724PubMedGoogle Scholar
  14. 14.
    Jeffery, P. K. 1983Morphologic features of airway surface epithelial-cells and glandsAm. Rev. Respir. Dis.128S14S20PubMedGoogle Scholar
  15. 15.
    Jeffery, P. K., Gaillard, D., Moret, S. 1992Human airway secretory cells during development and in mature airway epitheliumEur. Respir. J.593104PubMedGoogle Scholar
  16. 16.
    Rogers, A. V., Dewar, A., Corrin, B., Jeffery, P. K. 1993Identification of serous-like cells in the surface epithelium of human bronchiolesEur. Respir. J.6498504PubMedGoogle Scholar
  17. 17.
    Krouse, M. E., Talbott, J. F., Lee, M. M., Joo, N. S., Wine, J. J. 2004Acid and base secretion in the Calu-3 model of human serous cellsAm. J. Physiol. Lung. Cell. Mol. Physiol.287L1274L1283PubMedCrossRefGoogle Scholar
  18. 18.
    Babu, P. B. R., Chidekel, A., Utidjian, L., Shaffer, T. H. 2004Regulation of apical surface fluid and protein secretion in human airway epithelial cell line Calu-3Biochem. Biophys. Res. Commun.31911321137CrossRefGoogle Scholar
  19. 19.
    Singh, M., Krouse, M., Moon, S., Wine, J. J. 1997Most basal I-sc in Calu-3 human airway cells is bicarbonate-dependent Cl- secretionAm. J. Physiol. Lung. Cell. Mol. Physiol.16L690L698Google Scholar
  20. 20.
    Pezron, I., Mitra, R., Pal, D., Mitra, A. K. 2002Insulin aggregation and asymmetric transport across human bronchial epithelial cell monolayers (Calu-3)J. Pharm. Sci.9111351146PubMedCrossRefGoogle Scholar
  21. 21.
    Patel, J., Pal, D., Vangala, V., Gandhi, M., Mitra, A. K. 2002Transport of HIV-protease inhibitors across 1 alpha,25di-hydroxy vitamin D-3-treated Calu-3 cell monolayers: modulation of P-glycoprotein activityPharm. Res.1916961703PubMedCrossRefGoogle Scholar
  22. 22.
    Cooney, D., Kazantseva, M., Hickey, A. J. 2004Development of a size-dependent aerosol deposition model utilising human airway epithelial cells for evaluating aerosol drug deliveryATLA, Altern. Lab. Anim.32581590Google Scholar
  23. 23.
    Fiegel, J., Ehrhardt, C., Schaefer, U. F., Lehr, C. M., Hanes, J. 2003Large porous particle impingement on lung epithelial cell monolayers—toward improved particle characterization in the lungPharm. Res.20788796PubMedCrossRefGoogle Scholar
  24. 24.
    Renkin, E. M. 1954Filtration, diffusion, and molecular sieving through porous cellulose membranesJ. Gen. Physiol.38225243PubMedGoogle Scholar
  25. 25.
    Seki, T., Mochida, J., Okamoto, M., Hosoya, O., Juni, K., Morimoto, K. 2003Measurement of diffusion coefficients of parabens and steroids in water and 1-octanolChem. Pharm. Bull.51734736PubMedCrossRefGoogle Scholar
  26. 26.
    Hosoya, O., Chono, S., Saso, Y., Juni, K., Morimoto, K., Seki, T. 2004Determination of diffusion coefficients of peptides and prediction of permeability through a porous membraneJ. Pharm. Pharmacol.5615011507PubMedCrossRefGoogle Scholar
  27. 27.
    Knowles, M., Murray, G., Shallal, J., Askin, F., Ranga, V., Gatzy, J., Boucher, R. 1984Bioelectric properties and ion flow across excised human bronchiJ. Appl. Physiol.56868877PubMedGoogle Scholar
  28. 28.
    Berger, J. T., Voynow, J. A., Peters, K. W., Rose, M. C. 1999Respiratory carcinoma cell lines—MUC genes and glycoconjugatesAm. J. Respir. Cell Mol. Biol.20500510PubMedGoogle Scholar
  29. 29.
    Mathias, N. R., Timoszyk, J., Stetsko, P. I., Megill, J. R., Smith, R. L., Wall, D. A. 2002Permeability characteristics of Calu-3 human bronchial epithelial cells: in vitroin vivo correlation to predict lung absorption in ratsJ. Drug Target.103140CrossRefGoogle Scholar
  30. 30.
    Dejong, P. M., Vansterkenburg, M. A. J. A., Hesseling, S. C., Kempenaar, J. A., Mulder, A. A., Mommaas, A. M., Dijkman, J. H., Ponec, M. 1994Ciliogenesis in human bronchial epithelial-cells cultured at the air–liquid interfaceAm. J. Respir. Cell Mol. Biol.10271277Google Scholar
  31. 31.
    Finkbeiner, W. E., Carrier, S. D., Teresi, C. E. 1993Reverse transcription-polymerase chain-reaction (RT-PCR) phenotypic analysis of cell-cultures of human tracheal epithelium, tracheobronchial glands, and lung carcinomasAm. J. Respir. Cell Mol. Biol.9547556PubMedGoogle Scholar
  32. 32.
    Yamaya, M., Finkbeiner, W. E., Widdicombe, J. H. 1991Ion-transport by cultures of human tracheobronchial submucosal glandsAm. J. Physiol.261L485L490PubMedGoogle Scholar
  33. 33.
    Meyrick, B., Sturgess, J. M., Reid, L. 1969A reconstruction of duct system and secretory tubules of human bronchial submucosal glandThorax24729736PubMedCrossRefGoogle Scholar
  34. 34.
    Wan, H., Winton, H. L., Soeller, C., Stewart, G. A., Thompson, P. J., Gruenert, D. C., Cannell, M. B., Garrod, D. R., Robinson, C. 2000Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-Eur. Respir. J.1510581068PubMedCrossRefGoogle Scholar
  35. 35.
    Ehrhardt, C., Kneuer, C., Fiegel, J., Hanes, J., Schaefer, U. F., Kim, K. J., Lehr, C. M. 2002Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studiesCell Tissue. Res.308391400PubMedCrossRefGoogle Scholar
  36. 36.
    Loman, S., Radl, J., Jansen, H. M., Out, T. A., Lutter, R. 1997Vectorial transcytosis of dimeric IgA by the Calu-3 human lung epithelial cell line: upregulation by IFN-gammaAm. J. Physiol. Lung Cell. Mol. Physiol.16L951L958Google Scholar
  37. 37.
    Meaney, C., Florea, B. I., Borchard, G., Junginger, H. E. 1999Characterisation of a human submucosal gland cell line (Calu-3) as an in vitro model of the airway epitheliumProc. Int. Symp. Control. Rel. Bioact. Mater.26198199Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Christopher I. Grainger
    • 1
  • Leona L. Greenwell
    • 2
  • David J. Lockley
    • 2
  • Gary P. Martin
    • 1
  • Ben Forbes
    • 1
  1. 1.Pharmaceutical Science Research DivisionKing’s College LondonLondonUK
  2. 2.Safety and Environmental Assurance CentreUnilever Colworth, SharnbrookSharnbrookUK

Personalised recommendations