Pharmaceutical Research

, Volume 23, Issue 7, pp 1543–1553 | Cite as

Development of an in Vitro Rat Intestine Segmental Perfusion Model to Investigate Permeability and Predict Oral Fraction Absorbed

  • Marc-Etienne Castella
  • Marianne Reist
  • Joachim M. Mayer
  • Jean-Jacques Turban
  • Bernard Testa
  • Claire Boursier-Neyret
  • Bernard Walther
  • Jean-Marie Delbos
  • Pierre-Alain Carrupt
Research Paper


The aims of the study are to develop and evaluate an in vitro rat intestine segmental perfusion model for the prediction of the oral fraction absorbed of compounds and to assess the ability of the model to study intestinal metabolism.


The system consisted of a perfusion cell with a rat intestinal segment and three perfusion circulations (donor, receiver, and rinsing circulation). Lucifer yellow (LY) was applied as internal standard together with test compounds in the donor circulation. To validate the model, the permeability of eight noncongeneric passively absorbed drugs was determined. Intestinal N-demethylation of verapamil into norverapamil was followed in the donor and receiver circulations by high-performance liquid chromatography analysis.


The in vitro model allowed ranking of the tested compounds according to their in vivo absorption potential. The Spearman's correlation coefficient between the oral fraction absorbed in humans and the ratio of permeation coefficient of test compound to the permeation coefficient of LY within the same experiment was 0.98 (P < 0.01). Moreover, intestinal N-demethylation of verapamil, its permeation, and the permeation of its metabolite norverapamil could be assessed in parallel.


Up to six permeation kinetics can be obtained per rat, and the method has shown to be a valuable tool to estimate human oral absorption.

Key Words

absorption model in vitro intestinal metabolism in vitro intestinal permeability in vitroin vivo correlation rat jejunal perfusion 



oral fraction absorbed


high-performance liquid chromatography


liquid chromatography with tandem mass spectrometry

log Doct7.4

octanol water distribution coefficient at pH 7.4

log PN

octanol water partition coefficient of the uncharged species


Lucifer yellow


molecular weight


coefficient of apparent permeability


effective permeability coefficients



We thank Marie-Paule Le Bon, Josseline Le Gourrierec, and Jacky Pothier for the analyses of nadolol samples. Also, we are grateful to Catherine Canovi for her advices and skilful technical assistance.


  1. 1.
    Tukker, J. J. 1996In vitro methods for the assessment of permeabilityDressman, J. B.Lennernäs, H. eds. Oral Drug Absorption—Prediction and Assessment Vol. 106Marcel Dekker Inc.New York5172Google Scholar
  2. 2.
    Koga, K., Murakami, M., Kawashima, S. 1998Effects of fatty acid sucrose esters on ceftibuten transport by rat intestinal brush-border membrane vesiclesBiol. Pharm. Bull.21747751PubMedGoogle Scholar
  3. 3.
    Hidalgo, I. J., Raub, T. J., Borchardt, R. T. 1989Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeabilityGastroenterology96736749PubMedGoogle Scholar
  4. 4.
    Artursson, P., Borchardt, R. T. 1997Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyondPharm. Res.1416551658PubMedCrossRefGoogle Scholar
  5. 5.
    Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., Grove, J. R. 1999MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screeningJ. Pharm. Sci.882833PubMedCrossRefGoogle Scholar
  6. 6.
    Braun, A., Hämmerle, S., Suda, K., Rothen-Rutishauser, B., Günthert, M., Kramer, S. D., Wunderli-Allenspach, H. 2000Cell culture as tools in biopharmacyEur. J. Pharm. Sci.11S51S60PubMedCrossRefGoogle Scholar
  7. 7.
    Barthe, L., Woodley, J. F., Kenworthy, S., Houin, G. 1998An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestineEur. J. Drug Metab. Pharmacokinet.23313323PubMedCrossRefGoogle Scholar
  8. 8.
    Chowhan, Z. T., Amaro, A. A. 1977Everted rat intestinal sacs as an in vitro model for assessing absorptivity of new drugsJ. Pharm. Sci.6612491253PubMedGoogle Scholar
  9. 9.
    Ungell, A. L., Nylander, S., Bergstrand, S., Sjoberg, A., Lennernäs, H. 1998Membrane transport of drugs in different regions of the intestinal tract of the ratJ. Pharm. Sci.87360366PubMedCrossRefGoogle Scholar
  10. 10.
    Smith, P. L. 1996Methods for evaluating intestinal permeability and metabolism in vitroBorchardt, R. T.Smith, P. L.Wilson, G. eds. Models for Assessing Drug Absorption and Metabolism Vol. 8PlenumNew York1334Google Scholar
  11. 11.
    Lennernäs, H., Nylander, S., Ungell, A. L. 1997Jejunal permeability: a comparison between the Ussing chamber technique and the single-pass perfusion in humansPharm. Res.14667671PubMedCrossRefGoogle Scholar
  12. 12.
    Salphati, L., Childers, K., Pan, L., Tsutsui, K., Takahashi, L. 2001Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in manJ. Pharm. Pharmacol.5310071013PubMedCrossRefGoogle Scholar
  13. 13.
    Palm, K., Artursson, P., Luthman, K. 1997Experimental and theoretical predictions of intestinal drug absorptionWaterbeemd, H.Testa, B.Folkers, G. eds. Computer-Assisted Lead Finding and OptimizationWiley-VCHWeinheim277289Google Scholar
  14. 14.
    Zhao, Y. H., Abraham, M. H., Le, J., Hersey, A., Luscombe, C. N., Beck, G., Sherborne, B., Cooper, I. 2003Evaluation of rat intestinal absorption data and correlation with human intestinal absorptionEur. J. Med. Chem.38233243PubMedCrossRefGoogle Scholar
  15. 15.
    Amidon, G. L., Sinko, P. J., Fleisher, D. 1988Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compoundsPharm. Res.5651654PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson, B. M., Charman, W. N., Porter, C. J. 2003Application of compartmental modelling to an examination of in vitro intestinal permeability data: assessing the impact of tissue uptake, p-glycoprotein, and CYP3ADrug Metab. Dispos.3111511160PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson, B. M., Charman, W. N., Porter, C. J. 2001The impact of p-glycoprotein efflux on enterocyte residence time and enterocyte-based metabolism of verapamilJ. Pharm. Pharmacol.5316111619PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson, B. M., Charman, W. N., Porter, C. J. 2002An in vitro examination of the impact of polyethylene glycol 400, pluronic P85 and vitamin E d-a-tocopheryl polyethylene glycol 1000 succinate on p-glycoprotein efflux and enterocyte-based metabolism in excised rat intestineAAPS Pharm. Sci.4E40CrossRefGoogle Scholar
  19. 19.
    Sandstrom, R., Lennernäs, H. 1999Repeated oral rifampicin decreases the jejunal permeability of R/S-verapamil in ratsDrug Metab. Dispos.27951955PubMedGoogle Scholar
  20. 20.
    Johnson, B. M., Chen, W., Borchardt, R. T., Charman, W. N., Porter, C. J. 2002A kinetic evaluation of the absorption, efflux, and metabolism of verapamil in the autoperfused rat jejunumJ. Pharmacol. Exp. Ther.305151158CrossRefGoogle Scholar
  21. 21.
    Fagerholm, U., Johansson, M., Lennernäs, H. 1996Comparison between permeability coefficients in rat and human jejunumPharm. Res.1313361342PubMedCrossRefGoogle Scholar
  22. 22.
    Dowty, M. E., Dietsch, C. R. 1997Improved prediction of in vivo peroral absorption from in vitro intestinal permeability using an internal standard to control for intra- and inter-rat variabilityPharm. Res.1417921797PubMedCrossRefGoogle Scholar
  23. 23.
    Konishi, Y., Hagiwara, K., Shimizu, M. 2002Transepithelial transport of fluorescein in Caco-2 cell monolayers and use of such transport in in vitro evaluation of phenolic acid availabilityBiosci. Biotechnol. Biochem.6624492457PubMedCrossRefGoogle Scholar
  24. 24.
    Amidon, G. L., Lennernäs, H., Shah, V. P., Crison, J. R. 1995A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailabilityPharm. Res.12413420PubMedCrossRefGoogle Scholar
  25. 25.
    Winiwarter, S., Bonham, N. M., Ax, F., Hallberg, A., Lennernäs, H., Karlen, A. 1998Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approachJ. Med. Chem.4149394949PubMedCrossRefGoogle Scholar
  26. 26.
    Bergström, C. A., Strafford, M., Lazorova, L., Avdeef, A., Luthman, K., Artursson, P. 2003Absorption classification of oral drugs based on molecular surface propertiesJ. Med. Chem.46558570PubMedCrossRefGoogle Scholar
  27. 27.
    Caldwell, G. W., Easlick, S. M., Gunnet, J., Masucci, J. A., Demarest, K. 1998In vitro permeability of eight beta-blockers through Caco-2 monolayers utilizing liquid chromatography/electrospray ionization mass spectrometryJ. Mass Spectrom.33607614PubMedCrossRefGoogle Scholar
  28. 28.
    Yamashita, S., Tanaka, Y., Endoh, Y., Taki, Y., Sakane, T., Nadai, T., Sezaki, H. 1997Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorptionPharm. Res.14486491PubMedCrossRefGoogle Scholar
  29. 29.
    Pappenheimer, J. R., Michel, C. C. 2003Role of villus microcirculation in the intestinal absorption of glucose: coupling of epithelial with endothelial transportJ. Physiol.553561574PubMedCrossRefGoogle Scholar
  30. 30.
    Polentarutti, B. I., Peterson, A. L., Sjoberg, A. K., Anderberg, E. K., Utter, L. M., Ungell, A. L. 1999Evaluation of viability of excised rat intestinal segments in the Ussing chamber: investigation of morphology, electrical parameters, and permeability characteristicsPharm. Res.16446454PubMedCrossRefGoogle Scholar
  31. 31.
    Kalitsky-Szirtes, J., Shayeganpour, A., Brocks, D. R., Piquette-Miller, M. 2004Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated ratsDrug Metab. Dispos.322027PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, Y. H., Jones, D. R., Hall, S. D. 2004Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolitesDrug Metab. Dispos.32259266PubMedCrossRefGoogle Scholar
  33. 33.
    Kolars, J. C., Schmiedlin-Ren, P., Dobbins, W. O., Schuetz, J., Wrighton, S. A., Watkins, P. B. 1992Heterogeneity of cytochrome P450 3A expression in rat gut epitheliaGastroenterology10211861198PubMedGoogle Scholar
  34. 34.
    Ginski, M. J., Polli, J. E. 1999Prediction of dissolution–absorption relationships from a dissolution/Caco-2 systemInt. J. Pharm.177117125PubMedCrossRefGoogle Scholar
  35. 35.
    Kobayashi, M., Sada, N., Sugawara, M., Iseki, K., Miyazaki, K. 2001Development of a new system for prediction of drug absorption that takes into account drug dissolution and pH change in the gastro-intestinal tractInt. J. Pharm.2218794PubMedCrossRefGoogle Scholar
  36. 36.
    He, X., Sugawara, M., Kobayashi, M., Takekuma, Y., Miyazaki, K. 2003An in vitro system for prediction of oral absorption of relatively water-soluble drugs and ester prodrugsInt. J. Pharm.2633544PubMedCrossRefGoogle Scholar
  37. 37.
    Kataoka, M., Masaoka, Y., Yamasaki, Y., Sakane, T., Sezaki, H., Yamashita, S. 2003In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugsPharm. Res.2016741680PubMedCrossRefGoogle Scholar
  38. 38.
    Meriani, F., Coceani, N., Sirotti, C., Voinovich, D., Grassi, M. 2003In vitro nimesulide absorption from different formulationsJ. Pharm. Sci.93540552CrossRefGoogle Scholar
  39. 39.
    Zhu, C., Jiang, L., Chen, T. M., Hwang, K. K. 2002A comparative study of artificial membrane permeability assay for high-throughput profiling of drug absorption potentialEur. J. Med. Chem.37399407PubMedCrossRefGoogle Scholar
  40. 40.
    Artursson, P., Karlsson, J. 1991Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cellsBiochem. Biophys. Res. Commun.175880885PubMedCrossRefGoogle Scholar
  41. 41.
    Tsutsumi, K., Li, S. K., Ghanem, A. H., Ho, N. F., Higuchi, W. I. 2003A systematic examination of the in vitro Ussing chamber and the in situ single-pass perfusion model systems in rat ileum permeation of model solutesJ. Pharm. Sci.92344359PubMedCrossRefGoogle Scholar
  42. 42.
    Eichelbaum, M., Ochs, H. R., Roberts, G., Somogyi, A. 1982Pharmacokinetics and metabolism of antipyrine (phenazone) after intravenous and oral administrationArzneim.-Forsch.32575578Google Scholar
  43. 43.
    Bouchard, G., Carrupt, P. A., Testa, B., Gobry, V., Girault, H. H. 2002Lipophilicity and solvation of anionic drugsChem. Eur. J.834783484CrossRefGoogle Scholar
  44. 44.
    Caron, G., Steyaert, G., Pagliara, A., Reymond, F., Crivori, P., Gaillard, P., Carrupt, P. A., Avdeef, A., Comer, J., Box, K. J., Girault, H. H., Testa, B. 1999Structure–lipophilicity relationships of neutral and protonated β-blockers. Part I. Intra- and intermolecular effects in isotropic systemsHelv. Chim. Acta8212111222CrossRefGoogle Scholar
  45. 45.
    Chiou, W. L., Barve, A. 1998Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and ratsPharm. Res.1517921795PubMedCrossRefGoogle Scholar
  46. 46.
    Nasrallah, S. M., Iber, F. L. 1969Mannitol absorption and metabolism in manAm. J. Med. Sci.2588088PubMedGoogle Scholar
  47. 47.
    Ingels, F., Beck, B., Oth, M., Augustijns, P. 2004Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayersInt. J. Pharm.274221232PubMedCrossRefGoogle Scholar
  48. 48.
    Dreyfuss, J., Shaw, J. M., Ross, J. J. 1978Absorption of the beta-adrenergic-blocking agent, nadolol, by mice, rats, hamsters, rabbits, dogs, monkeys, and man: an unusual species differenceXenobiotica8503508PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Marc-Etienne Castella
    • 1
  • Marianne Reist
    • 1
  • Joachim M. Mayer
    • 1
  • Jean-Jacques Turban
    • 1
  • Bernard Testa
    • 2
  • Claire Boursier-Neyret
    • 3
  • Bernard Walther
    • 3
  • Jean-Marie Delbos
    • 3
  • Pierre-Alain Carrupt
    • 1
  1. 1.LCT-Pharmacochemistry, School of Pharmaceutical Sciences, EPGLUniversity of Geneva, University of LausanneGeneva 4Switzerland
  2. 2.Département de PharmacieCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
  3. 3.Technologie ServierOrléansFrance

Personalised recommendations