Pharmaceutical Research

, Volume 23, Issue 6, pp 1251–1264 | Cite as

A Specific Picomolar Hybridization-Based ELISA Assay for the Determination of Phosphorothioate Oligonucleotides in Plasma and Cellular Matrices

  • Xiaohui Wei
  • Guowei Dai
  • Guido Marcucci
  • Zhongfa Liu
  • Dale Hoyt
  • William Blum
  • Kenneth K. ChanEmail author
Research Paper


To develop and validate an ultrasensitive and specific hybridization-based enzyme-linked immunosorbent assay method for quantification of two phosphorothioate oligonucleotides (PS ODNs) (G3139 and GTI-2040) in biological fluids.


This assay was based on hybridization of analytes to the biotin-labeled capture ODNs followed by ligation with digoxigenin-labeled detection ODN. The bound duplex was then detected by anti-digoxigenin-alkaline phosphatase using Attophos® (Promega, Madison, WI, USA) as substrate. S1 nuclease and major factors such as the hybridization temperature, concentration of capture probe, and the use of detergent were evaluated toward assay sensitivity, selectivity, and accuracy.


The method is selective to the parent drugs with minimal cross-reactivity (<6%) with 3′-end deletion oligomers for both G3139 and GTI-2040. A linear range of 0.05 to 10 nM (r2 > 0.99) was observed for GTI-2040 in a variety of biological matrices. For both G3139 and GTI-2040, the within-day precision and accuracy values were found to be <20% and 90–110%, respectively; the between-day precision and accuracy were determined to be <20% and 90–120%. Addition of S1 nuclease combined with washing step greatly improved the assay linearity and selectivity. The utility of this assay was demonstrated by simultaneous determination of GTI-2040 in plasma and its intracellular levels in treated acute myeloid leukemia patients.


The validated hybridization enzyme-linked immunosorbent assay method is specific for quantitation of PS ODNs in biological samples to picomolar level. This method provides a powerful technique to evaluate plasma pharmacokinetics and intracellular uptake of PS ODNs in patients and shows its utility in clinical evaluations.

Key Words

hybridization–ligation ELISA intracellular drug level pharmacokinetics phosphorothioate oligonucleotides 



acute myeloid leukemia


alkaline phosphatase


antisense oligonucleotide


area under the curve


bone marrow


total body clearance


steady state concentration


coefficient of variation




enzyme-linked immunosorbent assay


lower limit of quantification


limit of detection


messenger ribonucleic acid


peripheral blood mononuclear cell






phosphorothioate oligonucleotide


red blood cells

RNase H

ribonuclease H


ribonucleotide reductase



We acknowledge the support by NIH R21CA105879 and UO1 CA 76576.


  1. 1.
    Furdon, P. J., Dominski, Z., Kole, R. 1989RNase H cleavage of RNA hybridized to oligonulceotides containing methylphosphonate, phosphorothioate and phosphodiesterase bondsNucleic Acids Res.1791939204PubMedGoogle Scholar
  2. 2.
    Walder, R. Y., Walder, J. A. 1988Role of RNase H in hybrid-arrested translation by antisense oligonucleotidesProc. Natl. Acad. Sci. USA8550115015PubMedCrossRefGoogle Scholar
  3. 3.
    Tamm, I., Dorken, B., Hartmann, G. 2001Antisense therapy in oncology: new hope for an old idea?Lancet358489497PubMedCrossRefGoogle Scholar
  4. 4.
    Dean, N. M., Bennett, C. F. 2003Antisense oligonucleotide-based therapeutics for cancerOncogene2290879096PubMedCrossRefGoogle Scholar
  5. 5.
    Dias, N., Stein, C. A. 2002Antisense oligonucleotides: basic concepts and mechanismMol. Cancer Ther.1347355PubMedGoogle Scholar
  6. 6.
    Jansen, B., Zangemeister-Wittke, U. 2002Antisense therapy for cancer—the time for truthLancet Oncol.3672683PubMedCrossRefGoogle Scholar
  7. 7.
    Lee, Y., Vassilakos, A., Feng, N., Lam, V., Xie, H., Wang, H., Wang, M., Jin, H., Xiong, K., Liu, C., Wright, J., Young, A. 2003GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumorsCancer Res.6328022811PubMedGoogle Scholar
  8. 8.
    Desai, A. A., Schilsky, R. L., Young, A., Janisch, L., Stadler, W. M., Vogelzang, N. J., Cadden, S., Wright, J. A., Ratain, M. J. 2005A phase I study of antisense oligonucleotide GTI-2040 given by continuous intravenous infusion in patients with advanced solid tumorsAnn. Oncol.16958965PubMedCrossRefGoogle Scholar
  9. 9.
    Marcucci, G., Stock, W., Dai, G., Klisovic, R. B., Liu, S., Klisovic, M. I., Blum, W., Kefauver, C., Sher, D. A., Green, M., Moran, M., Maharry, K., Novick, S., Bloomfield, C. D., Zwiebel, J. A., Larson, R. A., Grever, M. R., Chan, K. K., Byrd, J. C. 2005Phase Istudy of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activityJ. Clin. Oncol.2334043411PubMedCrossRefGoogle Scholar
  10. 10.
    Dai, G., Chan, K. K, Liu, S., Hoyt, D., Whitman, W., Klisovic, M., Shen, T., Caligiuri, M. A., Byrd, J., Grever, M., Marcucci, G. 2005Cellular uptake and intracellular levels of the bcl-2 antisense g3139 in cultured cells and treated patients with acute myeloid leukemiaClin. Cancer Res.1129983008PubMedCrossRefGoogle Scholar
  11. 11.
    Bourque, A. J., Cohen, A. S. 1993Quantitative analysis of phosphorothioate oligonucleotide in biological fluids using fast anion-exchange chromatographyJ. Chromatogr.6174349PubMedGoogle Scholar
  12. 12.
    Crooke, S. T., Graham, M. J., Zuckerman, J. E., Brooks, D., Conklin, B. S., Cummins, L. L., Greig, M. J., Guinosso, C. J., Kornbrust, D., Manoharan, M., Sasmor, H. M., Schleich, T., Tivel, K. L., Griffey, R. H. 1996Pharmacokinetics properties of several novel oligonucleotide analogs in miceJ. Pharmacol. Exp. Ther.277923937PubMedGoogle Scholar
  13. 13.
    Griffey, R. H., Greig, M. J., Gaus, H. J., Liu, K., Monteith, D., Winniman, M., Cummins, L. L. 1997Characterization of oligonucleotide metabolism in vivo via liquid chromatography/electrospray tandem mass spectrometry with a quadrupole ion trap mass spectrometerJ. Mass Spectrom.32305313PubMedCrossRefGoogle Scholar
  14. 14.
    Gaus, H. L., Owens, S. R., Winniman, M., Cooper, S., Cummins, L. L. 1997On-line HPLC electrospray mass spectrometry of phosphorothioate oligonucleotide metabolitesAnal. Chem.69313319PubMedCrossRefGoogle Scholar
  15. 15.
    Bres, J. C., Morvan, F., Lefebvre, I., Vaseur, J. J., Pompon, A., Imbach, J. L. 2001Kinetics study of the biotransformation of an oligonucleotide prodrug in ells extract by matrix-assisted laser desorption-ionization time-of-flight mass spectrometryJ. Chromatogr. B Biomed. Sci. Appl.753123130PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, S. H., Gallo, J. M. 1998Use of capillary electrophoresis methods to characterize the pharmacokinetics of antisense drugsElectrophoresis1928612869PubMedCrossRefGoogle Scholar
  17. 17.
    Cossum, P. A., Sasmor, H., Dellinger, D., Truong, L., Cmunnins, L.,  et al. 1993Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to ratsJ. Pharmacol. Exp. Ther.26711811190PubMedGoogle Scholar
  18. 18.
    Raynaud, F. I., Orr, R. M., Goddard, P. M., Lacey, H. A., Lancashire, H.,  et al. 1997Pharmacokinetics of G3139, a phosphorothioate oligodeoxynucleotide antisense to bcl-2, after intravenous administration or continuous subcutaneous infusion to miceJ. Pharmacol. Exp. Ther.281420427PubMedGoogle Scholar
  19. 19.
    Yu, R. Z., Geary, R. S., Levin, A. A. 2004Application of novel quantitative bioanalytical methods for pharmacokinetic and pharmacokentic/pharmacodynamic assessments of antisense oligonucleotidesDrug Discov. Dev.7195203Google Scholar
  20. 20.
    Yu, R. Z., Baker, B., Chappell, A., Geary, R. S., Cheung, E., Levin, A. A. 2002Development of an ultrasensitive noncompetitive hybridization–ligation enzyme-linked immunosorbent assay for the determination of phosphorothioate oligodeoxynucleotide in plasmaAnal. Biochem.3041925PubMedCrossRefGoogle Scholar
  21. 21.
    Deverre, J. R., Boutet, V., Boquet, D., Ezan, E., Grassi, J., Grogent, J. M. 1997A competitive enzyme hybridization assay for plasma determination of phosphodiester and phosphorothioate antisense oligonucleotidesNucleic Acids Res.2535843589PubMedCrossRefGoogle Scholar
  22. 22.
    Efler, S. M., Zhang, L., Noll, B. O., Uhlmann, E., Davis, H. L. 2005Quantification of oligodeoxynucleotides in human plasma with a novel hybridization assay offers greatly enhanced sensitivity over capillary gel electrophoresisOligonucleotides15119131PubMedCrossRefGoogle Scholar
  23. 23.
    Serres, M., McNulty, M. J., Christensen, L., Zon, G., Findlay, J. W. 1996Development of a novel scintillation proximity competitive hybridization assay for the determination of phosphorothioate antisense oligonucleotide plasma concentrations in a toxicokinetic studyAnal. Biochem.233228233PubMedCrossRefGoogle Scholar
  24. 24.
    Sewell, K. L., Geary, R. S., Baker, B. F., Glover, J. M., Mant, T. G., Yu, R. Z., Tami, J. A., Dorr, F. A. 2002Phase I trial of ISIS 104838, a 2′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-αJ. Pharmacol. Exp. Ther.30313341343PubMedCrossRefGoogle Scholar
  25. 25.
    Brown-Augsburger, P., Yue, X. M., Lockridge, J. A., McSwiggen, J. A., Kamboj, D., Hillgren, K. M. 2004Development and validation of a sensitive, specific, and rapid hybridization-ELISA assay for determination of concentrations of a ribozyme in biological matricesJ. Pharm. Biomed. Anal.34129139PubMedCrossRefGoogle Scholar
  26. 26.
    Geary, R. S., Leeds, J. M., Fitchett, J., Burckin, T., Truong, L.,  et al. 1997Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide antisense inhibitor of C-raf-1 kinase expressionDrug Metab. Dispos.2512721281PubMedGoogle Scholar
  27. 27.
    Zhang, R., Yan, J., Shahinian, H., Amin, G., Lu, Z., Liu, T.,  et al. 1995Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjectsClin. Pharmacol. Ther.584453PubMedCrossRefGoogle Scholar
  28. 28.
    Yu, R. Z., Geary, R. S., Leeds, J. M., Watanabe, T., Moore, M.,  et al. 2001Comparison of pharmacokinetics and tissue disposition of an antisense phosphorothioate oligonucleotide targeting human Ha-ras mRNA in mouse and monkeyJ. Pharm. Sci.90182193PubMedCrossRefGoogle Scholar
  29. 29.
    Morris, M. J., Tong, W. P., Cordon-Cardo, C., Drobnjak, M., Kelly, W.K.,  et al. 2002Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancerClin. Cancer Res.8679683PubMedGoogle Scholar
  30. 30.
    Brown, D. A., Kang, S. H., Gryaznov, S. M., Dedioniso, L., Heidenreich, O., Sullivan, S., Xu, X., Nerenberg, M. I. 1994Effect of phosphorothioate modification of oligodeoxynucleotides of specific protein bindingJ. Biol. Chem.2692680126805PubMedGoogle Scholar
  31. 31.
    Levin, A. A. 1999A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotidesBiochim. Biophys. Acta14896984PubMedGoogle Scholar
  32. 32.
    Dai, G., Wei, X., Liu, Z., Liu, S., Marcucci, G., Chan, K. K. 2005Characterization and quantification of Bcl-2 antisense G3139 and metabolites in plasma and urine by ion-pair reversed phase HPLC coupled with electrospray ion-trap mass spectrometryJ. Chromatogr. B825201213CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Xiaohui Wei
    • 1
  • Guowei Dai
    • 1
  • Guido Marcucci
    • 2
    • 3
  • Zhongfa Liu
    • 1
  • Dale Hoyt
    • 4
  • William Blum
    • 3
  • Kenneth K. Chan
    • 1
    • 2
    Email author
  1. 1.Division of Pharmaceutics, College of PharmacyThe Ohio State UniversityColumbusUSA
  2. 2.The Comprehensive Cancer Center, Rm 308 OSU CCCThe Ohio State UniversityColumbusUSA
  3. 3.Division of Hematology-Oncology, College of Medicine and Public HealthThe Ohio State UniversityColumbusUSA
  4. 4.Division of Pharmacology, College of PharmacyThe Ohio State UniversityColumbusUSA

Personalised recommendations