Pharmaceutical Research

, Volume 23, Issue 2, pp 291–302 | Cite as

Protein Kinase C Family Members as a Target for Regulation of Blood–Brain Barrier Na,K,2Cl-Cotransporter During In Vitro Stroke Conditions and Nicotine Exposure

  • Tianzhi Yang
  • Karen E. Roder
  • G. Jayarama Bhat
  • Thomas J. Thekkumkara
  • Thomas J. Abbruscato
Research Paper


The aim of the study is to identify specific protein kinase C (PKC) isoforms involvement in K+ transport mediated at altered blood–brain barrier (BBB) response to stroke conditions with prior nicotine exposure, which provides ways to intervene pharmacologically in PKC-mediated molecular pathways that could lead to effective treatment for smoking stroke patients.


Changes in PKC isoform levels were studied in the cytosolic and membrane fractions of bovine brain microvessel endothelial cells subjected to stroke conditions as well as nicotine/cotinine exposure. Furthermore, abluminal Na,K,2Cl-cotransporter (NKCC) activity regulated by specific conventional PKC isoform activators and inhibitors was investigated using rubidium (86Rb) uptake studies.


Membrane-bound PKCα, PKCβI, and PKCɛ levels were increased after 6 h hypoxia/aglycemia, and this was attenuated by 24-h nicotine/cotinine exposure. Interestingly, membrane-bound PKCγ protein level was decreased after 6 h hypoxia/aglycemia and increased by 24-h nicotine/cotinine exposure. 86Rb uptake studies showed that basolateral NKCC activity was down-regulated by both a conventional PKC inhibitor and specific inhibitors for PKCα, PKCβ, and PKCɛ and was up-regulated by an activator of conventional PKCs during 6-h hypoxia/aglycemia treatment.


Specific PKC inhibitors or activators might be designed to individualize stroke therapies and improve health outcome for smokers by rebalancing ion transport into and out of the brain.

Key Words

blood–brain barrier Na,K,2Cl-cotransporter nicotine protein kinase C stroke 


  1. 1.
    Gill, J. S., Shipley, M. J., Tsementzis, S. A., Hornby, R., Gill, S. K., Hitchcock, E. R., Beevers, D. G. 1989Cigarette smoking. A risk factor for hemorrhagic and nonhemorrhagic strokeArch. Intern. Med.14920532057CrossRefPubMedGoogle Scholar
  2. 2.
    Wang, L., Kittaka, M., Sun, N., Schreiber, S., Zlokovic, B. V. 1997Chronic nicotine treatment enhances focal ischemic brain injury and depletes free pool of brain microvascular tissue plasminogen activator in ratsJ. Cereb. Blood Flow Metab.17136147PubMedGoogle Scholar
  3. 3.
    Brock, T. A., Brugnara, C., Canessa, M., Gimbrone, M. A. 1986Bradykinin and vasopressin stimulate Na,K-2Cl-cotransport in cultured endothelial cellsAm. J. Physiol., Cell Physiol.250C888C895Google Scholar
  4. 4.
    Abbruscato, T. J., Lopez, S. P., Mark, K. S., Hawkins, B. T., Davis, T. P. 2002Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cellsJ. Pharm. Sci.9125252538CrossRefPubMedGoogle Scholar
  5. 5.
    Abbruscato, T. J., Lopez, S. P., Roder, K., Paulson, J. R. 2004Regulation of blood–brain barrier Na,K,2Cl-cotransporter through phosphorylation during in vitro stroke conditions andnicotine exposureJ. Pharmacol. Exp. Ther.310459468CrossRefPubMedGoogle Scholar
  6. 6.
    O'Donnell, M. E., Martinez, A., Sun, D. 1995Cerebral microvascular endothelial cell Na–K–Cl contransport: regulation by astrocyte-conditioned mediumAm. J. Physiol.268C747C754PubMedGoogle Scholar
  7. 7.
    Sun, D., O'Donnell, M. E. 1996Astroglial-mediated phosphorylation of the Na–K–Cl contransporter in brain microvessel endothelial cellsAm. J. Physiol.271C620C627PubMedGoogle Scholar
  8. 8.
    Vigne, P., Farre, A. L., Frelin, C. 1994Na+–K+–Cl cotransporter of brain capillary endothelial cellsJ. Biol. Chem.2691992519930PubMedGoogle Scholar
  9. 9.
    Kawai, N., McCarron, R. M., Spatz, M. 1996Effect of hypoxia on Na+–K+–Cl-cotransport in cultured brain capillary endothelial cells of the ratJ. Neurochem.6625722579PubMedGoogle Scholar
  10. 10.
    Wieloch, T., Cardell, M., Bingren, H., Zivin, J., Saitoh, T. 1991Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient forebrain ischemiaJ. Neurochem.5612271235PubMedGoogle Scholar
  11. 11.
    Krupinski, J., Slevin, M. A., Kumar, P., Gaffney, J., Kaluza, J. 1998Protein kinase C expression and activity in the human brain after ischemic strokeActa Neurobiol. Exp.581321Google Scholar
  12. 12.
    Huang, F. L., Yoshida, Y., Nakabayashi, H., Young, W. S., Huang, K. P. 1988Immunocytochemical localization of protein kinase C isozymes in rat brainJ. Neurosci.847344744PubMedGoogle Scholar
  13. 13.
    Shearman, M. S., Naor, Z., Sekiguchi, K., Kishimoto, A., Nishizuka, Y. 1989Selective activation of the g-subspecies of protein kinase C from bovine cerebellum by arachidonic acid and its lipoxygenase metabolitesFEBS Lett.243177182CrossRefPubMedGoogle Scholar
  14. 14.
    Yerby, T. R., Vibat, T., Sun, D., Payne, J. A., O'Donnell, M. E. 1997Molecular characterization of the Na,K,2Cl-cotransporter of bovine aortic endothelial cellsAm. J. Physiol.273C188C197PubMedGoogle Scholar
  15. 15.
    Audus, K. L., Borchardt, R. T. 1987Bovine brain microvessel endothelial cell monolayers as a model system for the blood–brain barrierAnn. N.Y. Acad. Sci.507918PubMedGoogle Scholar
  16. 16.
    Bosch, R. R., Bazuine, M., Wake, M. M., Span, P. N., Olthaar, A. J., Schurmann, A., Maassen, J. A., Hermus, A. R., Willems, P. H., Sweep, C. G. 2003Inhibition of protein kinase CbetaII increases glucose uptake in 3T3-L1 adipocytes through elevated expression of glucose transporter 1 at the plasma membraneMol. Endocrinol.1712301239CrossRefPubMedGoogle Scholar
  17. 17.
    Owen, N. E., Prastein, M. L. 1985Na/K/Cl contransport in cultured human fibroblastsJ. Biol. Chem.26014451451PubMedGoogle Scholar
  18. 18.
    Hryciw, D. H., Pollock, C. A., Poronnik, P. 2005PKC-alpha-mediated remodeling of the actin cytoskeleton is involved in constitutive albumin uptake by proximal tubule cellsAm. J. Physiol., Renal Physiol.288F1227F1235CrossRefGoogle Scholar
  19. 19.
    Yuan, S. Y., Ustinova, E. E., Wu, M. H., Tinsley, J. H., Xu, W., Korompai, F. L., Taulman, A. C. 2000Protein kinase C activation contributes to microvascular barrier dysfunction in the heart at early stages of diabetesCirc. Res.87412417PubMedGoogle Scholar
  20. 20.
    Shiroshita, N., Musashi, M., Sakurada, K., Kimura, K., Tsuda, Y., Ota, S., Iwasaki, H., Miyazaki, T., Kato, T., Miyazaki, H., Shimosaka, A., Asaka, M. 2001Involvement of protein kinase C-epsilon in signal transduction of thrombopoietin in enhancement of interleukin-3-dependent proliferation of primitive hematopoietic progenitorsJ. Pharmacol. Exp. Ther.297868875PubMedGoogle Scholar
  21. 21.
    Johnson, J. A., Gray, M. O., Chen, C. H., Mochly-Rosen, D. 1996A protein kinase C translocation inhibitor as an isozyme-selective antagonist of cardiac functionJ. Biol. Chem.2712496224966PubMedGoogle Scholar
  22. 22.
    Yedovitzky, M., Mochly-Rosen, D., Johnson, J. A., Gray, M. O., Ron, D., Abramovitch, E., Cerasi, E., Nesher, R. 1997Translocation inhibitors define specificity of protein kinase C isoenzymes in pancreatic beta-cellsJ. Biol. Chem.27214171420PubMedGoogle Scholar
  23. 23.
    Das, K. C., Guo, X. L., White, C. W. 1998Protein kinase Cdelta-dependent induction of manganese superoxide dismutase gene expression by microtubule-active anticancer drugsJ. Biol. Chem.2733463934645CrossRefPubMedGoogle Scholar
  24. 24.
    Abbruscato, T. J., Davis, T. P. 1999Combination of hypoxia/aglycemia compromises in vitro BBB integrityJ. Pharmacol. Exp. Ther.289668675PubMedGoogle Scholar
  25. 25.
    Abbruscato, T. J., Davis, T. P. 1999Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: influence of astrocyte contactBrain Res.842277286CrossRefPubMedGoogle Scholar
  26. 26.
    Umar, S., Sellin, J. H., Morris, A. P. 2000Increased nuclear translocation of catalytically active PKC-zeta during mouse colonocyte hyperproliferationAm. J. Physiol.: Gasterointest. Liver Physiol.279G223G237Google Scholar
  27. 27.
    Russell, J. M. 2000Sodium–potassium–chloride cotransportPhysiol. Rev.80211276PubMedGoogle Scholar
  28. 28.
    O'Donnell, M. E., Martinez, A., Sun, D. 1995Endothelial Na–K–Cl cotransport regulation by tonicity and hormones: phosphorylation of cotransport proteinAm. J. Physiol., Cell Physiol.269C1513C1523Google Scholar
  29. 29.
    Padanilam, B. J. 2001Induction and subcellular localization of protein kinase C isozymes following renal ischemiaKidney Int.5917891797CrossRefPubMedGoogle Scholar
  30. 30.
    Mellor, H., Parker, P. J. 1998The extended protein kinase C superfamilyBiochem. J.332281292PubMedGoogle Scholar
  31. 31.
    Erclik, M. S., Mitchell, J. 2002The role of protein kinase C-δ in PTH stimulation of IGF-binding protein-5 mRNA in UMR-106-01 cellsAm. J. Physiol.: Endocrinol. Metab.282E534E541Google Scholar
  32. 32.
    Csukai, M., Mochly-Rosen, D. 1999Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localizationPharmacol. Res.39253259CrossRefPubMedGoogle Scholar
  33. 33.
    Dempsey, C., Newton, A. C., Mochly-Rosen, D., Fields, A. P., Reyland, M. E., Nissel, P. A., Messing, R. O. 2000Protein kinase C isozymes and the regulation of diverse cell responsesAm. J. Physiol., Lung Cell. Mol. Physiol.279L429L438Google Scholar
  34. 34.
    Brownson, E. A., Abbruscato, T. J., Gillespie, T. J., Hruby, V. J., Davis, T. P. 1994Effect of peptidases at the blood–brain barrier on the permeability of enkephalinJ. Pharmacol. Exp. Ther.270675680PubMedGoogle Scholar
  35. 35.
    Domanska-Janik, K., Zalewska, T. 1992Effect of brain ischemia on protein kinase CJ. Neurochem.5814321439PubMedGoogle Scholar
  36. 36.
    Cardell, M., Wieloch, T. 1993Time course of the translocation and inhibition of protein kinase C during complete cerebral ischemia in the ratJ. Neurochem.6113081314PubMedGoogle Scholar
  37. 37.
    Selvatici, R., Marino, S., Piubello, C., Rodi, D., Beani, L., Gandini, E., Siniscalchi, A. 2002Protein kinase C activity, translocation, and selective isoform subcellular redistribution in the rat cerebral cortex after in vitro ischemiaJ. Neurosci. Res.716471Google Scholar
  38. 38.
    O'Donnell, M. E., Tran, L., Lam, T. I., Liu, X. B., Anderson, S. E. 2004Bumetanide inhibition of the blood–brain barrier Na–K–Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of strokeJ. Cereb. Blood Flow Metab.2410461056PubMedGoogle Scholar
  39. 39.
    Yan, Y., Dempsey, R. J., Flemmer, A., Forbush, B., Sun, D. 2003Inhibition of Na–K–Cl cotransporter during focal cerebral ischemia decreases edema and neuronal damageBrain Res.9612231CrossRefPubMedGoogle Scholar
  40. 40.
    Chen, H., Luo, J., Kintner, D. B., Shull, G. E., Sun, D. 2005Na+-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemiaJ. Cereb. Blood Flow Metab.255466PubMedGoogle Scholar
  41. 41.
    Paulson, J. R., Roder, K. E., McAfee, G., Allen, D. D., Schyf, C. J., Abbruscato, T. J. 2006Tobacco smoke chemicals attenuate brain-to-blood potassium transport mediated by the Na,K,2Cl-cotransporter during hypoxia-reoxygenationJ. Pharmacol. Exp. Ther.316248254PubMedGoogle Scholar
  42. 42.
    Benowitz, N. L. 1997The role of nicotine in smoking-related cardiovascular diseasePrev. Med.26412417CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Tianzhi Yang
    • 1
  • Karen E. Roder
    • 1
  • G. Jayarama Bhat
    • 1
  • Thomas J. Thekkumkara
    • 1
  • Thomas J. Abbruscato
    • 1
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyTexas Tech University Health Sciences CenterAmarilloUSA

Personalised recommendations