Pharmaceutical Research

, Volume 22, Issue 12, pp 2163–2173 | Cite as

Cubosome Dispersions as Delivery Systems for Percutaneous Administration of Indomethacin

  • Elisabetta Esposito
  • Rita Cortesi
  • Markus Drechsler
  • Lydia Paccamiccio
  • Paolo Mariani
  • Catia Contado
  • Elisa Stellin
  • Enea Menegatti
  • Francesco Bonina
  • Carmelo Puglia
Research Paper


The present study concerns the production and characterization of monooleine (MO) dispersions as drug delivery systems for indomethacin, taken as model anti-inflammatory drug.


Dispersions were produced by emulsification and homogenization of MO and poloxamer in water. Morphology and dimensional distribution of the disperse phase have been characterized by cryo-transmission electron microscopy and photon correlation spectroscopy, respectively. X-ray diffraction has been performed to determine the structural organization of the disperse phase. Sedimentation field flow fractionation (SdFFF) has been performed to investigate drug distribution in the dispersion. An in vitro diffusion study was conducted by Franz cell associated to stratum corneum epidermis membrane on cubosome dispersions viscosized by carbomer. In vivo studies based on skin reflectance spectrophotometry and tape stripping were performed to better investigate the performance of cubosome as indomethacin delivery system.


Microscopy studies showed the coexistence of vesicles and cubosomes. X-ray diffraction revealed the presence of a bicontinuous cubic phase of spatial symmetry Im3m (Q229). SdFFF demonstrated that no free drug was present in the dispersion. Indomethacin incorporated in viscosized MO dispersions exhibited a lower flux with respect to the analogous formulation containing the free drug in the aqueous phase and to the control formulation based on carbomer gel. Reflectance spectroscopy demonstrated that indomethacin incorporated into MO dispersions can be released in a prolonged fashion. Tape-stripping experiments corroborated this finding.


MO dispersions can be proposed as nanoparticulate systems able to control the percutaneous absorption of indomethacin.

Key Words

cryo-TEM cubosomes reflectance spectroscopy tape stripping X-ray 


  1. 1.
    Hyde, S. T., Andersson, S., Ericsson, B., Larsson, K. 1984A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerol monooleate water systemZ. Kristallogr.168213219Google Scholar
  2. 2.
    Mariani, P., Luzzati, V., Delacroix, H. 1988Cubic phases of lipid-containing systems. Structure analysis and biological implicationsJ. Mol. Biol.204165189PubMedCrossRefGoogle Scholar
  3. 3.
    Luzzati, V., Vargas, R., Mariani, P., Gulik, A., Delacroix, H. 1993Cubic phases of lipid-containing systems. Elements of a theory and biological connotationsJ. Mol. Biol.229540551PubMedCrossRefGoogle Scholar
  4. 4.
    Chung, H., Caffrey, M. 1994The neutral area surface of the cubic mesophases: location and propertiesBiophys. J.66377381PubMedCrossRefGoogle Scholar
  5. 5.
    D'Antona, P., Parker, W. O.,Jr., Zanirato, M. C., Esposito, E., Nastruzzi, C. 2000Rheologic and NMR characterization of monoglyceride-based formulationJ. Biomed. Mater. Pharm.524052Google Scholar
  6. 6.
    Engstroem, S., Norden, T. P., Nyquist, H. 1999Cubic phases for studies of drug partition into lipid bilayersEur. J. Pharm.8243254Google Scholar
  7. 7.
    Engstroem, S., Lindahl, L., Wallin, R., Engblom, J. 1992A study ofpolar lipid drug carrier systems undergoing a thermoreversible lamellar-to-cubic phase transitionInt. J. Pharm.86137145Google Scholar
  8. 8.
    Shah, J. C., Sadhale, Y., Chilukuri, D. M. 2001Cubic phase gels asdrug delivery systemsAdv. Drug Deliv. Rev.47229250PubMedCrossRefGoogle Scholar
  9. 9.
    Larsson, K. 2000Aqueous dispersion of cubic lipid–water phasesCurr. Opin. Colloid Interface Sci.56469CrossRefGoogle Scholar
  10. 10.
    T. Landh and K. Larsson. Particles, method of preparing said particles and uses thereof. US patent no. 5531925 (1996).Google Scholar
  11. 11.
    Gustafsson, J., Ljusberg-Wharen, H., Almgrem, M., Larsson, K. 1997Submicronparticles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymerLangmuir1369646971Google Scholar
  12. 12.
    Siekmann, B., Bunjes, H., Koch, M. H. J., Westesen, K. 2002Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride–water phasesInt. J. Pharm.2443343PubMedCrossRefGoogle Scholar
  13. 13.
    Kim, J. S., Kim, H. K., Chung, H., Sohn, Y. T., Kwon, I. C., Jeong, S. Y. 2000Drug formulations that form a dispersed cubic phase when mixed with waterProc. Int. Symp. Control. Release Bioact. Mater.2711181119Google Scholar
  14. 14.
    Spicer, P. T., Hayden, K. L. 2001Novel process for producing cubic liquid crystalline nanoparticles (cubosomes)Langmuir1757485756CrossRefGoogle Scholar
  15. 15.
    Gustafsson, J., Ljusberg-Wharen, H., Almgrem, M., Larsson, K. 1996Cubic lipid–water phase dispersed into submicron particlesLangmuir1246114613CrossRefGoogle Scholar
  16. 16.
    E. Esposito, N. Eblovi, S. Rasi, M. Drechsler, G. M. Di Gregorio, E. Menegatti, R. Cortesi. Lipid-based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci. 5(4) article 30 (2003).Google Scholar
  17. 17.
    Lars, N., Ashraf, A.-A. 2004Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating modelJ. Invest. Dermatol.4715732Google Scholar
  18. 18.
    Nakano, M., Sugita, A., Matsuoka, H., Handa, T. 2001Small angle X-ray scattering and 13C NMR investigation on the internal structure of “cubosomes”Langmuir1739173922Google Scholar
  19. 19.
    Almgrem, M., Edwards, K., Karlsson, G. 2000Cryo transmission electron microscopy of liposomes and related structuresColloids Surf., A174321Google Scholar
  20. 20.
    Engstrom, S., Ericsson, B., Landh, T. 1996A cubosome formulation for intravenous administration of somatostatinProc. Int. Symp. Control. Release Bioact. Mater.23382383Google Scholar
  21. 21.
    Kim, J. S., Kim, H. K., Chung, H., Sohn, Y. T., Kwon, I. C., Jeong, S. Y. 2000Drug formulations that form a dispersed cubic phase when mixed with waterProc. Int. Symp. Control. Release Bioact. Mater.2711181119Google Scholar
  22. 22.
    Boyd, J. B. 2000Characterisation of drug release from cubosomes using the pressure ultrafiltration methodInt. J. Pharm.260239247Google Scholar
  23. 23.
    Kwan, K. C., Breault, G. O., Umbenhauer, E. R., McMahon, F. G., Duggan, D. E. 1976Kinetics of indomethacin absorption, elimination, and enterohepatic circulation in manJ. Pharm. Biopharm.4255280Google Scholar
  24. 24.
    Helleberg, L. 1981Clinical pharmacokinetics of indomethacinClin. Pharmacokinet.6245258PubMedGoogle Scholar
  25. 25.
    Srinath, P., Chary, M. G., Vyas, S. P., Diwan, P. V. 2000Long circulating liposomes of indomethacin in arthritic rats—a biodisposition studyPharm. Acta Helv.74399404PubMedGoogle Scholar
  26. 26.
    Puglia, C., Trombetta, D., Venuti, V., Saija, A., Bonina, F. 2004Evaluation of in vitro topical anti-inflammatory activity of indomethacin from liposomal vesiclesJ. Pharm. Pharmacol.5612251232PubMedCrossRefGoogle Scholar
  27. 27.
    Miyazaki, S., Takahashi, A., Kubo, W., Bachynsky, J., Lobenberg, R. 2003Poly n-butylcyanoacrylate (PNBCA) nanocapsules as a carrier for NSAIDs: in vitro release and in vivo skin penetrationJ. Pharm. Pharm. Sci.6238245PubMedGoogle Scholar
  28. 28.
    Moon, M. H., Park, I., Kim, Y. 1998Size characterization of liposomes by flow field-flow fractionation and photon correlation spectroscopy. Effect of ionic strength and pH of carrier solutionsJ. Chromatogr., A81391100CrossRefGoogle Scholar
  29. 29.
    Contado, C., Dondi, F. 2001Barley starch granules subject to SPLITT cell fractionation and Sd/StFFF size characterizationStarch53414423CrossRefGoogle Scholar
  30. 30.
    Liu, S., Kamijo, M., Takayasu, T., Takayama, S. 2002Direct analysis of indomethacin in rat plasma using a column-switching high-performance liquid chromatographic systemJ. Chromatogr., B7675360Google Scholar
  31. 31.
    Bronaugh, R. L., Stewart, R. F., Simon, M. 1986Methods for in vitro percutaneous absorption studies VII: use of excised human skinJ. Pharm. Sci.7510941097PubMedGoogle Scholar
  32. 32.
    Bouclier, M., Chatelus, A., Hensby, C. N. 1989

    In vivo animal models for the evaluation of anti-inflammatory drug action in the skin

    Lowe, N.J.Hensby, C.N. eds. Nonsteroidal Anti-inflammatory DrugsKargerBasel118132
    Google Scholar
  33. 33.
    Touitou, E., Fabin, B. 1988Altered skin permeation of a highly lipophilic molecule: tetrahydrocannabinolInt. J. Pharm.431722Google Scholar
  34. 34.
    Ricci, M., Puglia, C., Bonina, F., Giovanni, C., Giovagnoli, S., Rossi, C. 2005Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studiesJ. Pharm. Sci.9411491159PubMedCrossRefGoogle Scholar
  35. 35.
    Saija, A., Tomaino, A., Trombetta, D., Pasquale, A., Uccella, N., Barbuzzi, T., Paolino, D., Bonina, F. 2000In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agentsInt. J. Pharm.1993947PubMedCrossRefGoogle Scholar
  36. 36.
    Dawson, J. B., Barker, D. J., Ellis, D. J., Grassam, E., Catterill, J. A., Fischer, G. W., Feather, J. W. 1980A theoretical and experimental study of light absorption and scattering by in vivo skinPhys. Med. Biol.25696709CrossRefGoogle Scholar
  37. 37.
    G. Wörle, K. Westesen, M. H. J. Koch. Investigation of the phase behavior of monoolein/surfactant dispersions of different composition and preparation methods. EMBL Hamburg Outstation Annual Report (2000).Google Scholar
  38. 38.
    Schimpf, M., Caldwell, K., Giddings, J. C. 2000Field-Flow Fractionation HandbookWiley-InterscienceNew YorkGoogle Scholar
  39. 39.
    Levin, S., Klausner, E. 1995Measurements of size distribution and density of pharmaceutical fat emulsions, using field-programmed sedimentation field-flow fractionation (SdFFF)Pharm. Res.1212181224PubMedCrossRefGoogle Scholar
  40. 40.
    Levin, S., Nudelman, R., Reschiglian, P., Pasti, L. 1995Simulation of fractograms of fat emulsions in power-programmed sedimentation field-flow fractionation (SdFFF)J. Pharm. Biomed. Anal.13869877PubMedCrossRefGoogle Scholar
  41. 41.
    Lu, G., Jun, H. W. 1998Diffusion studies of methotrexate in carbopol and poloxamer gelsInt. J. Pharm.16019CrossRefGoogle Scholar
  42. 42.
    Sandt, J. J., Burgsteden, J. A., Cage, S., Carmichael, P. L., Dick, I., Kenyon, S., Korinth, G., Larese, F., Limasset, J. C., Maas, W. J., Montomoli, L., Nielsen, J. B., Payan, J. P., Robinson, E., Sartorelli, P., Schaller, K. H., Wilkinson, S. C., Williams, F. M. 2004In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: a multi-centre comparison studyRegul. Toxicol. Pharmacol.39271281PubMedGoogle Scholar
  43. 43.
    Bonina, F. P., Puglia, C., Barbuzzi, T., Caprariis, P., Palagiano, F., Rimoli, M. G., Saija, A. 2001In vitro and in vivo evaluation ofpolyoxyethylene esters as dermal prodrugs of ketoprofen, naproxen and diclofenacEur. J. Pharm. Sci.14123134PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Elisabetta Esposito
    • 1
  • Rita Cortesi
    • 1
  • Markus Drechsler
    • 2
  • Lydia Paccamiccio
    • 3
  • Paolo Mariani
    • 3
  • Catia Contado
    • 4
  • Elisa Stellin
    • 1
  • Enea Menegatti
    • 1
  • Francesco Bonina
    • 5
  • Carmelo Puglia
    • 5
  1. 1.Dipartimento di Scienze FarmaceuticheUniversità di FerraraFerraraItaly
  2. 2.Macromolecular Chemistry IIUniversity of BayreuthBayreuthGermany
  3. 3.Dipartimento di Scienze Applicate ai Sistemi Complessi e INFMUniversità Politecnica delle MarcheAnconaItaly
  4. 4.Dipartimento di ChimicaUniversità di FerraraFerraraItaly
  5. 5.Dipartimento di Scienze FarmaceuticheUniversità di CataniaCataniaItaly

Personalised recommendations