Pharmaceutical Research

, Volume 22, Issue 12, pp 2058–2068 | Cite as

Uptake and Transport of PEG-Graft-Trimethyl-Chitosan Copolymer–Insulin Nanocomplexes by Epithelial Cells

  • Shirui Mao
  • Oliver Germershaus
  • Dagmar Fischer
  • Thomas Linn
  • Robert Schnepf
  • Thomas Kissel
Research Paper

Purpose

The effect of chitosan and polyethylene glycol (PEG)ylated trimethyl chitosan copolymer structure on the uptake and transport of insulin nanocomplexes was evaluated and transport mechanisms were investigated.

Methods

Insulin nanocomplexes were prepared from chitosan and its copolymers by self-assembly. Complex uptake in Caco-2 cells was quantified by measuring the cell-associated fluorescence and cellular localization was visualized by confocal laser scanning microscopy (CLSM) using tetra-methyl-rhodamine isothiocyanate-labeled insulin. The transport of selected insulin complexes through Caco-2 monolayers was then investigated and compared with in vivo uptake by nasal epithelium in diabetic rats.

Results

All complexes were 200–400 nm in diameter, positively charged, and displayed an insulin loading efficiency of approximately 90%. In vitro release of insulin from the complexes was dependent on the medium pH. Insulin uptake was enhanced by nanocomplex formation, and was dependent on incubation time, temperature, and concentration. Complex uptake in Caco-2 cells was inhibited by 25.2 ± 1.3%, 13.0 ± 1.0%, and 16.6 ± 0.7% in the presence of cytochalasin D, sodium azide, and 2,4-dinitrophenol, respectively. The uptake mechanism was assumed to be adsorptive endocytosis. Additionally, cell uptake efficiency was shown to be influenced by a combination of polymer molecular weight, viscosity, and positive charge density. However, none of the nanocomplexes displayed improved transport properties when compared to insulin transport data after 2 h incubation with Caco-2 monolayers. This result was further confirmed with animal experiments.

Conclusions

Small, stable insulin nanocomplexes were formed using PEGylated trimethyl chitosan copolymers, which significantly enhanced the uptake of insulin in Caco-2 cells by adsorptive endocytosis. However, nanocomplexation did not seem to enhance transcellular insulin transport across cell monolayers, which is in line with animal data in rats. This implies that PEGylated trimethyl chitosan complexes with insulin need further optimization and the Caco-2 cell line is a predictable in vitro cell culture model for drug absorption.

Key Words

Caco-2 cells insulin nanocomplexes PEGylation trimethyl chitosan uptake 

Notes

Acknowledgment

Shirui Mao cordially thanks Deutsche Akademische Austauschdienst (DAAD) for the financial support.

References

  1. 1.
    Sayani, A. P., Chien, Y. W. 1996Systemic delivery of peptides and proteins across absorptive mucosaeCrit. Rev. Ther. Drug Carrier Syst.1385184PubMedGoogle Scholar
  2. 2.
    Illum, L. 2003Nasal drug delivery—possibilities, problems and solutionsJ. Control. Release87187198PubMedCrossRefGoogle Scholar
  3. 3.
    Woodyatt, R. T. 1922The clinical use of insulinJ. Metab. Res.2793Google Scholar
  4. 4.
    McMartin, C., Hutchinson, L. E., Hyde, R., Peters, G. E. 1987Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavityJ. Pharm. Sci.76535540PubMedGoogle Scholar
  5. 5.
    Lee, V. H. L. 1990Protease inhibitors and penetration enhancers as approaches to modify peptide absorptionJ. Control. Release13213223CrossRefGoogle Scholar
  6. 6.
    Farraj, N. F., Johansen, B. R., Davis, S. S., Illum, L. 1990Nasal administration of insulin using bioadhesive microspheres as a delivery systemJ. Control. Release13253261CrossRefGoogle Scholar
  7. 7.
    Merkus, F. M. H. M., Schipper, N. G. M., Hermens, W. A. J. J., Romeijin, V. S. G., Verhoef, J. C. 1993Absorption enhancers in nasal drug delivery: efficacy and safetyJ. Control. Release24201208CrossRefGoogle Scholar
  8. 8.
    Illum, L., Jorgensen, H., Bisgaard, H., Krogsgaard, O., Rossing, N. 1987Bioadhesive microspheres as a potential nasal drug delivery systemInt. J. Pharm.39189199CrossRefGoogle Scholar
  9. 9.
    Janes, K. A., Calvo, P., Alonso, M. J. 2001Polysaccharide colloidal particles as delivery systems for macromoleculesAdv. Drug Deliv. Rev.478397PubMedCrossRefGoogle Scholar
  10. 10.
    Illum, L., Jabbal-Gill, I., Hinchcliffe, M., Fisher, A. N., Davis, S. S. 2001Chitosan as a novel nasal delivery system for vaccinesAdv. Drug Deliv. Rev.518196PubMedCrossRefGoogle Scholar
  11. 11.
    Fernández-Urrusuno, R., Calvo, P., Remuñán-López, C., Vila-Jato, J., Alonso, M. 1999Enhancement of nasal absorption of insulin using chitosan nanoparticlesPharm. Res.1615761581PubMedGoogle Scholar
  12. 12.
    Dyer, A. M., Hinchcliffe, M., Watts, P., Castile, J., Jabbal-Gill, I., Nankervis, R., Smith, A., Illum, L. 2002Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticlesPharm. Res.199981008PubMedCrossRefGoogle Scholar
  13. 13.
    Artursson, P., Lindmark, T., Davis, S. S., Illum, L. 1994Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2 cells)Pharm. Res.1113581361PubMedCrossRefGoogle Scholar
  14. 14.
    Mao, S., Shuai, X., Unger, F., Wittmar, M., Xie, X., Kissel, T. 2005Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymersBiomaterials2663436356PubMedCrossRefGoogle Scholar
  15. 15.
    Delie, F. 1998Evaluation of nano- and microparticle uptake by the gastrointestinal tractAdv. Drug Deliv. Rev.34221233PubMedCrossRefGoogle Scholar
  16. 16.
    McClean, S., Prosser, E., Meehan, E., O'Malley, D., Clarke, N., Ramtoola, Z., Brayden, D. 1998Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epitheliaEur. J. Pharm. Sci.6153163PubMedGoogle Scholar
  17. 17.
    Mao, S., Shuai, X., Unger, F., Simon, M., Bi, D., Kissel, T. 2004The depolymerization of chitosan: effects on physicochemical and biological propertiesInt. J. Pharm.2814554PubMedCrossRefGoogle Scholar
  18. 18.
    Simon, M., Wittmar, M., Bakowsky, U., Kissel, T. 2004Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol))-graft-poly(l-lactic acid): a novel carrier for transmucosal delivery of peptidesBioconjug. Chem.15841849PubMedCrossRefGoogle Scholar
  19. 19.
    Merdan, T., Kunath, K., Fischer, D., Kopecek, J., Kissel, T. 2002Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experimentsPharm. Res.19140146PubMedCrossRefGoogle Scholar
  20. 20.
    Walter, E., Kissel, T. 1995Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transportEur. J. Pharm. Sci.3215230CrossRefGoogle Scholar
  21. 21.
    Behrens, I., Pena, A. I. V., Alonso, M. J., Kissel, T. 2002Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transportPharm. Res.1911851193PubMedCrossRefGoogle Scholar
  22. 22.
    Knaul, J. Z., Hudson, S. M., Creber, K. A. M. 1999Improved mechanical properties of chitosan fibersJ. Appl. Polym. Sci.7217211732CrossRefGoogle Scholar
  23. 23.
    Zegers, M. M., Zaal, K. J., IJzendoorn, S. C., Klappe, K., Hoekstra, D. 1998Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 CellsMol. Biol. Cell.919391949PubMedGoogle Scholar
  24. 24.
    Qaddoumi, M. G., Ueda, H., Yang, J., Davda, J., Labhasetwar, V., Lee, V. H. L. 2004The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layersPharm. Res.21641648PubMedGoogle Scholar
  25. 25.
    Schipper, N. G., Varum, K. M., Artursson, P. 1996Chitosans as absorption enhancers for poorly absorbable drugs: 1. Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cellsPharm. Res.1316861692PubMedCrossRefGoogle Scholar
  26. 26.
    Schipper, N. G., Olsson, S., Hoogstraate, J. A., deBoer, A. G., Vårum, K. M., Artursson, P. 1997Chitosans as absorption enhancers for poorly absorbable drugs: 2. Mechanism of absorption enhancementPharm. Res.14923929PubMedCrossRefGoogle Scholar
  27. 27.
    Ranaldi, G., Marigliano, I., Vespiignani, I., Perozzi, G., Sambuy, Y. 2002The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell lineJ. Nutr. Biochem.13157167PubMedCrossRefGoogle Scholar
  28. 28.
    Wan, C. P., Park, C. S., Lau, B. H. 1993A rapid and simple microfluorometric phagocytosis assayJ. Immunol. Methods16217PubMedCrossRefGoogle Scholar
  29. 29.
    Huang, M., Khor, E., Lim, L.-Y. 2004Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylationPharm. Res.21344353PubMedCrossRefGoogle Scholar
  30. 30.
    Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., Amidon, G. L. 1997The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependentPharm. Res.1415681573PubMedCrossRefGoogle Scholar
  31. 31.
    Jung, T., Kamm, W., Bteitenbach, A., Kaiserling, E., Xiao, J. X., Kissel, T. 2000Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake?Eur. J. Pharm. Biopharm.50147160PubMedGoogle Scholar
  32. 32.
    Gonzalez-Mariscal, L., Contreras, R. G., Bolivar, J. J., Ponce, A., Chavez de Ramirez, B., Cereijido, M. 1990Role of calcium in tight junction formation between epithelial cellsAm. J. Physiol.259C978C986PubMedGoogle Scholar
  33. 33.
    Noach, A. B. J., Kurosaki, Y., Blom-Rosmalen, M. C. M., Boer, A. G., Breimer, D. D. 1993Cell-polarity dependent effect of chelation on the paracellular permeability of confluent Caco-2 cell monolayersInt. J. Pharm.90229237CrossRefGoogle Scholar
  34. 34.
    Ohtake, K., Maeno, T., Ueda, H., Ogihara, M., Natsume, H., Morimoto, Y. 2003Poly-l-arginine enhances paracellular permeability via serine/rhreonine phosphorylation of ZO-1 and tyrosine dephosphorylation of occludin in rabbit nasal epitheliumPharm. Res.2018381845PubMedGoogle Scholar
  35. 35.
    Ma, Z., Lim, L. 2003Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticlesPharm. Res.2018121819PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Shirui Mao
    • 1
    • 2
  • Oliver Germershaus
    • 1
  • Dagmar Fischer
    • 1
  • Thomas Linn
    • 3
  • Robert Schnepf
    • 4
  • Thomas Kissel
    • 1
  1. 1.Department of Pharmaceutics and BiopharmacyPhilipps-University of MarburgMarburgGermany
  2. 2.College of PharmacyShenyang Pharmaceutical UniversityShenyangChina
  3. 3.Medical Clinic III and PoliclinicJustus Liebig UniversityGiessenGermany
  4. 4.Complex BiosystemsHeidelbergGermany

Personalised recommendations