Pharmaceutical Research

, Volume 22, Issue 12, pp 2079–2090 | Cite as

Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel

Research Paper

Purpose

The main objective of this study was to obtain self-assembled biodegradable nanoparticles by a direct dialysis method for the delivery of anticancer drug. The in vitro cellular particle uptake and cytotoxicity to C6 glioma cell line were investigated.

Methods

Self-assembled anticancer drugs—paclitaxel-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) and poly(l-lactic acid) (PLA) nanoparticles—were achieved by direct dialysis. The physical and chemical properties of nanoparticles were characterized by various state-of-the-art techniques. The encapsulation efficiency and in vitro release profile were measured by high-performance liquid chromatography. Particle cellular uptake was studied using confocal microscopy, microplate reader, and flow cytometry. In addition, the cytotoxicity of this drug delivery system was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on C6 glioma cell line to predict the possible dose response of paclitaxel-loaded PLGA and PLA nanoparticles.

Results

PLGA and PLA nanoparticles with or without vitamin E tocopherol polyethylene glycol succinate (TPGS) as an additive were obtained, in which the sustained release of paclitaxel of more than 20 days was achieved. The coumarin6-loaded PLGA and PLA nanoparticles could penetrate the C6 glioma cell membrane and be internalized. The cytotoxicity of paclitaxel-loaded nanoparticles seemed to be higher than that of commercial Taxol® after 3 days incubation when paclitaxel concentrations were 10 and 20 μg/ml.

Conclusions

Direct dialysis could be employed to achieve paclitaxel-loaded PLGA and PLA nanoparticles, which could be internalized by C6 glioma cells and enhance the cytotoxicity of paclitaxel because of its penetration to the cytoplasm and sustained release property.

Key Words

cellular uptake cytotoxicity dialysis nanoparticle paclitaxel 

Abbreviations

DMF

dimethylformamide

PBS

phosphate-buffered saline

PLA

poly(poly(l-lactic acid)

PLGA

poly(d,l-lactic-co-glycolic acid)

References

  1. 1.
    Mcguire, W. P., Rowinsky, E. K., Rosenshein, N. B., Grumbine, F. C., Ettinger, D. S., Armstrong, D. K., Donehower, R. C. 1989Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasmsAnn. Intern. Med.111273279PubMedGoogle Scholar
  2. 2.
    Holmes, F. A., Walters, R. S., Theriault, R. L., Forman, A. D., Newton, L. K., Raber, M. N., Buzdar, A. U., Frye, D. K., Hortobagyi, G. N. 1991Phase II trials of taxol, an active drug in the treatment of metastatic breast cancerNatl. Cancer Inst.8317971805Google Scholar
  3. 3.
    Rowinsky, E. K., Wright, M., Monsarrat, B., Lesser, G. J., Donehower, R. C. 1993Taxol: pharmacology, metabolism and clinical implicationsCancer Surv.17283301PubMedGoogle Scholar
  4. 4.
    Gagandeep, S., Novikoff, P. M., Ott, M., Gupta, S. 1999Paclitaxel shows cytotoxic activity in human hepatocellular carcinoma cell linesCancer Res.136109118Google Scholar
  5. 5.
    Horwitz, S. B., Lothstein, L., Manfredi, J. J. 1986Taxol: mechanisms of action and resistanceAnn. N.Y. Acad. Sci.466737744Google Scholar
  6. 6.
    Jordan, M. A., Toso, R. J., Thrower, D. 1993Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrationsProc. Natl. Acad. Sci. USA9095529556PubMedGoogle Scholar
  7. 7.
    Manfredi, J. J., Parness, J., Horwithz, S. B. 1982Taxol binds to cellular microtubulesJ. Cell Biol.94688696PubMedCrossRefGoogle Scholar
  8. 8.
    Xu, K. L., Luduena, R. F. 2002Characterization of nuclear βII-tubulin in tumor cells: a possible novel target for taxolCell Motil. Cytoskelet.533952CrossRefGoogle Scholar
  9. 9.
    Zhong, J. J. 2002Plant cell culture for production of paclitaxel and other taxanesJ. Biosci. Bioeng.94591599PubMedGoogle Scholar
  10. 10.
    Lehoczky, O., Bagameri, A., Udvary, J., Pulay, T. 2001Side effects of paclitaxel therapy in ovarian cancer patientsEur. J. Gynaecol. Oncol.228184PubMedGoogle Scholar
  11. 11.
    Singla, A. K., Garg, A., Aggarwal, D. 2002Paclitaxel and its formulationsInt. J. Pharm.235179192PubMedCrossRefGoogle Scholar
  12. 12.
    Lockman, P. R., Mumper, R. J., Khan, M. A. 2002Nanoparticle technology for drug delivery across the blood brain barrierDrug Dev. Ind. Pharm.28113PubMedCrossRefGoogle Scholar
  13. 13.
    Couvreur, C., Treuple, R. L. 1990Nanoparticles as microcarriers for anticancer drugsAdv. Drug Deliv. Rev.5209230CrossRefGoogle Scholar
  14. 14.
    Feng, S. S., Chien, S. 2003Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseasesChem. Eng. Sci.5840874114Google Scholar
  15. 15.
    Jain, R. A. 2000The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) devicesBiomaterials2124752490PubMedCrossRefGoogle Scholar
  16. 16.
    Feng, S. S., Mu, L., Chen, B. H., Pack, D. 2002Polymeric nanospheres fabricated with natural emulsifiers for clinical administration of an anticancer drug paclitaxel (Taxol®)Mater. Sci. Eng., C208592CrossRefGoogle Scholar
  17. 17.
    Govender, T., Stolnik, S., Garnett, M. C., Lllum, L., Davis, S. S. 1999PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drugJ. Control. Release57171185PubMedCrossRefGoogle Scholar
  18. 18.
    Fonseca, C., Simoes, S., Gaspar, R. 2002Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activityJ. Control. Release83273286PubMedCrossRefGoogle Scholar
  19. 19.
    Dong, Y. C., Feng, S. S. 2004Methoxy poly(ethylene glycol)–poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugsBiomaterials2528432849PubMedGoogle Scholar
  20. 20.
    Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. 2001Biodegradable polymeric nanoparticles as drug delivery devicesJ. Control. Release70120PubMedCrossRefGoogle Scholar
  21. 21.
    Hans, M. L., Lowman, A. M. 2002Biodegradable nanoparticles for drug delivery and targetingCurr. Opin. Solid State Mater. Sci.6319327Google Scholar
  22. 22.
    Landry, F. B., Bazile, D. V., Spenlehauer, G., Veillard, M., Kreuter, J. 1995Release of the fluorescent marker Prodan® from poly(d,l-lactic acid) nanoparticles coated with albumin or polyvinyl alcohol in model digestive fluids (USP XXII)J. Control. Release44227236Google Scholar
  23. 23.
    Lavelle, E. C., Sharif, S., Thomas, N. W., Holland, J., Davis, S. S. 1995The importance of gastrointestinal uptake of particles in the design of oral delivery systemsAdv. Drug Deliv. Rev.18522CrossRefGoogle Scholar
  24. 24.
    Jeong, Y. I., Cheon, J. B., Kim, S. H., Nah, J. W., Lee, Y. M., Sung, Y. K., Akaike, T., Cho, C. S. 1998Clonazepam release from core-shell type nanoparticles in vitroJ. Control. Release51169178PubMedCrossRefGoogle Scholar
  25. 25.
    Jeong, Y. I., Shim, Y. H., Choi, C. Y., Jang, M. K., Shin, G. M., Nah, J. W. 2003Surfactant-free nanoparticles of poly(dl-lactide-co-glycolide) prepared with poly(l-lactide)/poly(ethylene glycol)J. Appl. Polym. Sci.8911161123CrossRefGoogle Scholar
  26. 26.
    Jeong, Y. I., Cho, C. S., Kim, S. H., Ko, K. S., Kim, S. I., Shim, Y. H., Nah, J. W. 2001Preparation of poly(dl-lactide-co-glycolide) nanoparticles without surfactantJ. Appl. Polym. Sci.8022282236Google Scholar
  27. 27.
    Stolnik, S., Garnett, M. C., Davis, M. C., Illum, L., Bousta, M., Vert, M., Davis, S. S. 1995The colloidal properties of surfactant-free biodegradable nanospheres from poly(β-malic acid-cobenzyl malate) and poly(lactic acid-co-glycolide)Colloids Surf., A97235245CrossRefGoogle Scholar
  28. 28.
    Foster, K. A., Yazdanian, M., Audus, K. L. 2001Microparticulate uptake mechanism of in-vitro cell culture models of the respiratory epitheliumJ. Pharm. Pharmacol.535766PubMedCrossRefGoogle Scholar
  29. 29.
    Mu, L., Feng, S. S. 2002Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®)J. Control. Release80129144PubMedCrossRefGoogle Scholar
  30. 30.
    Feng, S. S., Huang, G. F. 2001Effect of emulsifiers on the controlled release of paclitaxel from nanospheres of biodegradable polymersJ. Control. Release15369Google Scholar
  31. 31.
    Suh, H., Jeong, B., Liu, F., Kim, S. W. 1998Cellular uptake study of biodegradable nanoparticles in vascular smooth muscle cellsPharm. Res.1514951498PubMedCrossRefGoogle Scholar
  32. 32.
    Kolleck, I., Wissel, H., Guthmann, F. 2002HDL-Holoparticle uptake by alveolar type Π cells effect of vitamin E statusAm. J. Respir. Cell Mol. Biol.275763PubMedGoogle Scholar
  33. 33.
    Peter, P., Barbara, R. R., Peter, L., Heidi, W. A., Walter, E., Hans, P. M. 2002Transfer of lipophilic markers from PLGA and polystyrene nanoparticles to Caco-2 monolayers mimics particle uptakePharm. Res.19595601Google Scholar
  34. 34.
    Christine, M. E., Deborah, L., Robinson, R., Coester, C., Kwon, G. S., Samuel, J. 2002Analysis of poly(d,l-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitroPharm. Res.1914801487Google Scholar
  35. 35.
    Chawla, J. S., Amiji, M. M. 2003Cellular uptake and concentrations of tamoxifen upon administration in poly (ɛ-caprolactone) nanoparticlesAAPS PharmSci517CrossRefGoogle Scholar
  36. 36.
    Mo, Y., Lim, L. Y. 2004Mechanic study of the uptake of wheat germ agglutinin-conjugated PLGA nanoparticles by A549 cellsJ. Pharm. Sci.932028PubMedCrossRefGoogle Scholar
  37. 37.
    Borchard, G., Audus, K. L., Shi, F., Kreuter, J. 1994Uptake of surfactant-coated poly(methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayersInt. J. Pharm.1102935CrossRefGoogle Scholar
  38. 38.
    Gulyaev, A. E., Gelperina, S. E., Skidan, I. N., Antropov, A. S., Kivman, G. Y., Kreuter, J. 1999Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticlesPharm. Res.1615641569PubMedCrossRefGoogle Scholar
  39. 39.
    Ramge, P., Unger, R. E., Oltrogge, J. B., Begley, D., Briesen, H. V., Kreuter, J. 2000Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human, bovine and murine primary brain capillary endothelial cellsEur. J. Neurol.1219351940Google Scholar
  40. 40.
    Desai, M. P., Labhastetwar, V., Amidon, G. L., Levy, R. J. 1996Gastrointestinal uptake of biodegradable microparticles: effect of particle sizePharm. Res.1318381845PubMedCrossRefGoogle Scholar
  41. 41.
    Jung, T., Kamm, W., Breitenbach, A., Kaiserling, E., Xiao, J. X., Kissel, T. 2000Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake?Eur. J. Pharm. Biopharm.50147160PubMedGoogle Scholar
  42. 42.
    Zauner, W., Farrow, N. A., Hainess, A. M. R. 2001In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell densityJ. Control. Release713951PubMedCrossRefGoogle Scholar
  43. 43.
    Sahoo, S. K., Panyam, J., Prabha, S., Labhasetwar, V. 2002Residual polyvinyl alcohol associated with poly(d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptakeJ. Control. Res.82105114Google Scholar
  44. 44.
    Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., Amidon, G. L. 1997The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependentPharm. Res.1415681573PubMedCrossRefGoogle Scholar
  45. 45.
    Davda, J., Labhasetwar, V. 2002Characterization of nanoparticles uptake by endothelial cellsInt. J. Pharm.2335159PubMedCrossRefGoogle Scholar
  46. 46.
    Panyam, J., Sahoo, S. K., Prabha, S., Bargar, T., Labhasetwar, V. 2003Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticlesInt. J. Pharm.262111PubMedCrossRefGoogle Scholar
  47. 47.
    Watts, A., Marsh, M. 1992Endocytosis: what goes in and how?J.Cell Sci.10318PubMedGoogle Scholar
  48. 48.
    Noske, W., Lentzen, H., Lange, K., Keller, K. 1982Phagocytotic activity of glial cells in cultureExp. Cell Res.142437445PubMedCrossRefGoogle Scholar
  49. 49.
    Zimmer, C., Weissleder, R., Poss, K., Bogdanova, A., Wright, S. C., Enochs, W. S. 1995MR imaging of phagocytosis in experimental gliomasRadiology197533538PubMedGoogle Scholar
  50. 50.
    Desjardins, M., Griffiths, G. 2003Phagocytosis: latex leads the wayCurr. Opin. Cell Biol.15498503PubMedCrossRefGoogle Scholar
  51. 51.
    Martin, M. L., Regan, C. M. 1991Transient heat shock in mid-G1-phase of the C6 glioma cell cycle impairs entry into S-phaseToxicol. Lett.59197202PubMedCrossRefGoogle Scholar
  52. 52.
    Raymond, E., Hanauske, A., Faivre, S.,  et al. 1997Effects of prolonged versus short-term exposure paclitaxel (Taxol®) on human tumorcolony-forming unitsAnti-Cancer Drugs8379385PubMedGoogle Scholar
  53. 53.
    Liebmann, J. E., Cook, J. A., Lipschultz, C., Teague, D., Fisher, J., Mitchell, J. B. 1993Cytotoxic studies of paclitaxel (Taxol®) in human tumour cell linesBr. J. Cancer6811041109PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Molecular Engineering of Biological and Chemical SystemsSingapore-MIT AllianceSingaporeSingapore

Personalised recommendations