Pharmaceutical Research

, Volume 22, Issue 11, pp 1942–1953 | Cite as

Quantification of Crystallinity in Substantially Amorphous Materials by Synchrotron X-ray Powder Diffractometry

  • Cletus Nunes
  • Arumugam Mahendrasingam
  • Raj Suryanarayanan
Research Paper


The aim of this study was to develop a highly sensitive powder X-ray diffraction (XRD) technique for quantification of crystallinity in substantially amorphous pharmaceuticals, utilizing synchrotron radiation and a 2-D area detector.


Diffraction data were acquired at the European Synchrotron Radiation Facility (France) using a 2-D charge-coupled device detector. The crystallization of amorphous sucrose was monitored in situ, isothermally at several temperatures in the range of 90 to 160°C. An algorithm was developed for separation of the crystalline and amorphous intensities from the total diffraction pattern.


The synchrotron XRD technique allowed powder diffraction patterns to be recorded with a time resolution of 40 ms. The gradual crystallization of sucrose is analogous to a series of physical mixtures with increasing content of the crystalline component. The in situ crystallization approach circumvented the problem of inhomogeneity in mixing—a potentially serious issue at extreme mixture compositions. The estimated limit of detection of crystalline sucrose in an amorphous matrix was 0.2% w/w, a considerable improvement over the reported value of ∼1% w/w with a conventional XRD.


High-intensity XRD can discern subtle changes in the lattice order of materials. The first evidence of crystallization can serve as an indicator of the potential physical instability of the product.

Key Words

amorphous crystallinity pharmaceuticals synchrotron X-ray diffraction 


  1. 1.
    Miyazaki, S., Endo, H., Nadai, T., Arita, T., Nakano, M. 1977Effect of formulation additives on the dissolution behavior of tetracycline antibioticsChem. Pharm. Bull.2511861193PubMedGoogle Scholar
  2. 2.
    Imaizumi, H., Nambu, N., Nagai, T. 1980Stability and several physical properties of amorphous and crystalline form of indomethacinChem. Pharm. Bull.2825652569PubMedGoogle Scholar
  3. 3.
    Mullins, J. D., Macek, T. J. 1960Some pharmaceutical properties of novobiocinJ. Am. Pharm. Assoc.49245248Google Scholar
  4. 4.
    Tanaka, K., Takeda, T., Miyajima, K. 1991Cryoprotective effect of saccharides on denaturation of catalase by freeze-dryingChem. Pharm. Bull.3910911094Google Scholar
  5. 5.
    Izutsu, K., Yoshioka, S., Terao, T. 1994Effect of mannitol crystallinity on the stabilization of enzymes during freeze-dryingChem. Pharm. Bull.4258PubMedGoogle Scholar
  6. 6.
    Izutsu, K., Yoshioka, S., Terao, T. 1993Decreased protein-stabilizing effects of cryoprotectants due to crystallizationPharm. Res.1012321237CrossRefPubMedGoogle Scholar
  7. 7.
    Yoshioka, M., Hancock, B. C., Zografi, G. 1994Crystallization of indomethacin from the amorphous state below and above its glass transition temperatureJ. Pharm. Sci.8317001705PubMedGoogle Scholar
  8. 8.
    International Conference on Harmonisation (ICH)2000Draft guidance on Q6A specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substancesFed. Regist.658304183063Google Scholar
  9. 9.
    U.S. Department of Health and Human Services, Food and Drug Administration2003Process analytical technology—a framework for innovative pharmaceutical manufacturing and quality assurance. Draft guidanceFed. Regist.685278152782Google Scholar
  10. 10.
    Byrn, S., Pfeiffer, R., Ganey, M., Hoiberg, C., Poochikian, G. 1995Pharmaceutical solids: a strategic approach to regulatory considerationsPharm. Res.12945954CrossRefPubMedGoogle Scholar
  11. 11.
    Taylor, L. S., Zografi, G. 1998The quantitative analysis of crystallinity using FT-Raman spectroscopyPharm. Res.15755761CrossRefPubMedGoogle Scholar
  12. 12.
    Saleki-Gerhardt, A., Ahlneck, C., Zografi, G. 1994Assessment of disorder in crystalline solidsInt. J. Pharm.101237247CrossRefGoogle Scholar
  13. 13.
    Sebhatu, T., Angberg, M., Ahlneck, C. 1994Assessment of the degree of disorder in crystalline solids by isothermal microcalorimetryInt. J. Pharm.104135144CrossRefGoogle Scholar
  14. 14.
    Pikal, M. J., Lukes, A. L., Lang, J. E., Gaines, K. 1978Quantitative crystallinity determinations for beta-lactam antibiotics by solution calorimetry: correlations with stabilityJ. Pharm. Sci.67767773PubMedGoogle Scholar
  15. 15.
    Suryanarayanan, R. 1995

    X-ray powder diffractometry

    Brittain, H. G. eds. Physical Characterization of Pharmaceutical SciencesMarcel DekkerNew York187221
    Google Scholar
  16. 16.
    Hermans, P. H., Weidinger, A. 1948Quantitative X-ray investigation on the crystallinity of cellulose fibers. A background analysisJ. Appl. Phys.19491506CrossRefGoogle Scholar
  17. 17.
    Hermans, P. H., Weidinger, A. 1950Quantitative investigation of X-ray diffraction by “amorphous” polymers and some other noncrystalline substancesJ. Polym. Sci.5269281CrossRefGoogle Scholar
  18. 18.
    Surana, R., Suryanarayanan, R. 2000Quantitation of crystallinity in substantially amorphous pharmaceuticals and study of crystallization kinetics by X-ray powder diffractometryPowder Diffr.1526Google Scholar
  19. 19.
    Saleki-Gerhardt, A., Zografi, G. 1994Non-isothermal and isothermal crystallization of sucrose from the amorphous statePharm. Res.1111661173CrossRefPubMedGoogle Scholar
  20. 20.
    Kedward, C. J., MacNaughtan, W., Mitchell, J. R. 2000Isothermal and non-isothermal crystallization in amorphous sucrose and lactose at low moisture contentsCarbohydr. Res.329423430CrossRefPubMedGoogle Scholar
  21. 21.
    Makower, B., Dye, W. B. 1956Equilibrium moisture content and crystallization of amorphous sucrose and glucoseJ. Agric. Food Chem.47277CrossRefGoogle Scholar
  22. 22.
    Scoik, K. G., Carstensen, J. T. 1990Nucleation phenomena in amorphous sucrose systemsInt. J. Pharm.58185196CrossRefGoogle Scholar
  23. 23.
    Mahendrasingam, A., Fuller, W., Forsyth, V. T., Oldman, R. J., MacKerron, D., Blundell, D. J. 1992X-ray camera for high- and small-angle X-ray diffraction studies of the drawing and annealing of polymers at Daresbury Synchrotron Radiation SourceRev. Sci. Instrum.6310871090Google Scholar
  24. 24.
    C. Nunes. Use of High-Intensity X-Radiation in Solid-State Characterization of Pharmaceuticals, Ph.D. Dissertation, Department of Pharmaceutics, University of Minnesota, 2005.Google Scholar
  25. 25.
    Mahendrasingam, A., Martin, C., Bingham, S., Fuller, W., Blundell, D. J. 2000Synchrotron studies of polymers at high spatial and temporal resolutionAdv. X-ray Anal.43356365Google Scholar
  26. 26.
    Mahendrasingam, A., Blundell, D. J., Wright, A. K., Urban, V., Narayanan, T., Fuller, W. 2003Observations of structure development during crystallisation of oriented poly(ethylene terephthalate)Polymer4459155925CrossRefGoogle Scholar
  27. 27.
    Hughes, D. J., Mahendrasingam, A., Martin, C., Oatway, W. B., Heeley, E. L., Bingham, S. J., Fuller, W. 1999An instrument for the collection of simultaneous small and wide angle X-ray scattering and stress–strain data during deformation of polymers at high strain rates using synchrotron radiation sourcesRev. Sci. Instrum.7040514054CrossRefGoogle Scholar
  28. 28.
    Powder Diffraction File (PDF-2), International Centre for Diffraction Data, Newtown Square, PA, 1998.Google Scholar
  29. 29.
    Zografi, G. 1988States of water associated with solidsDrug Dev. Ind. Pharm.1419051926Google Scholar
  30. 30.
    Kontny, M. J., Zografi, G. 1995

    Sorption of water by solids

    Brittain, H. G. eds. Physical Characterization of Pharmaceutical SolidsMarcel DekkerNew York387418
    Google Scholar
  31. 31.
    Hancock, B. C., Zografi, G. 1997Characteristics and significance of the amorphous state in pharmaceutical systemsJ. Pharm. Sci.86112CrossRefPubMedGoogle Scholar
  32. 32.
    Stephenson, G. A., Forbes, R. A., Reutzel-Edens, S. M. 2001Characterization of the solid state: quantitative issuesAdv. Drug Deliv. Rev.486790CrossRefPubMedGoogle Scholar
  33. 33.
    Black, D. B., Lovering, E. G. 1977Estimation of the degree of crystallinity in digoxin by X-ray and infrared methodsJ. Pharm. Pharmacol.29684687PubMedGoogle Scholar
  34. 34.
    Galvan-Sanchez, A., Urena-Nunez, F., Flores-Llamas, H., Lopez-Castanares, R. 1999Determination of the crystallinity index of iron polymethacrylateJ. Appl. Polym. Sci.749951002CrossRefGoogle Scholar
  35. 35.
    Shamblin, S. L., Huang, E. Y., Zografi, G. 1996The effects of co-lyophilized polymeric additives on the glass transition temperature and crystallization of amorphous sucroseJ. Therm. Anal.4715671579CrossRefGoogle Scholar
  36. 36.
    Skoog, D. A., Leary, J. J. 1992Principles of Instrumental AnalysisHarcourt Brace CollegeForth Worth, TXGoogle Scholar
  37. 37.
    Thomsen, V., Schatzlein, D., Mercuro, D. 2003Limits of detection in spectroscopySpectroscopy18112114Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Cletus Nunes
    • 1
  • Arumugam Mahendrasingam
    • 2
  • Raj Suryanarayanan
    • 1
    • 3
  1. 1.Department of PharmaceuticsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of PhysicsKeele UniversityStaffordshireUK
  3. 3.MinneapolisUSA

Personalised recommendations