Pharmaceutical Research

, Volume 22, Issue 10, pp 1700–1707 | Cite as

Feasibility of Tissue Plasminogen Activator Formulated for Pulmonary Delivery

  • John S. Dunn
  • Rajiv Nayar
  • Jackie Campos
  • Brooks M. Hybertson
  • Yue Zhou
  • Mark Cornell Manning
  • John E. Repine
  • Kathleen A. Stringer
Research Paper


This study was conducted to assess the feasibility of a pulmonary formulation of tissue plasminogen activator (tPA) for nebulization into the airway by measuring protein stability, biologic activity, particle size, and estimating human lung distribution.


Formulations were derived by varying the surfactant and protein concentrations. Protein stability and recovery of each nebulized tPA formulation were assessed by ultraviolet spectroscopy. Formulations that met protein stability feasibility criteria were assessed for biologic and fibrinolytic activities. Biologic activity was determined by their ability to inhibit superoxide anion production by human neutrophils. Fibrinolytic activity was assessed by the cleavage of plasminogen to plasmin. Aerodynamic properties were assessed using a cascade impactor, and an estimation of human airway deposition was made via a human lung replica.


Twenty-seven tPA formulations were initially assessed, 15 of which met protein stability criteria. Subsequently, three of these formulations maintained biologic and fibrinolytic activities. These formulations exhibited particle sizes of 2.4–3.1 μm, and had respirable doses ≥65%. A formulation of 1mg mL−1 tPA and 0.1% Tween 80 exhibited a 45% deposition in the lower airways of a human lung replica.


A suitable pulmonary tPA formulation was identified that, following nebulization, maintained protein stability as well as biologic and fibrinolytic activities, and resulted in an optimal respirable dose and human airway deposition. This formulation may be applicable in the treatment of lung diseases, such as acute respiratory distress syndrome by permitting targeted pulmonary delivery of a therapeutic protein to the lungs.

Key Words

acute respiratory distress syndrome inflammation nebulization pulmonary delivery tissue plasminogen activator 



This work was funded by a National Institutes of Health Grant R41 HL071439-01A1.


  1. 1.
    Stringer, K. A. 2000Tissue plasminogen activator inhibit reactive oxygen species production by macrophagesPharmacotherapy20375379CrossRefPubMedGoogle Scholar
  2. 2.
    Stringer, K. A., Lindenfeld, J., Repine, A. J., Cohen, Z., Repine, J. E. 1997Tissue plasminogen activator (tPA) inhibits human neutrophil superoxide anion production in vitroInflammation212734CrossRefPubMedGoogle Scholar
  3. 3.
    Piantadosi, C. A., Schwartz, D. A. 2004The acute respiratory distress syndromeAnn. Intern. Med.141460470PubMedGoogle Scholar
  4. 4.
    Kane, C., Galanes, S. 2004Adult respiratory distress syndromeCrit. Care Nurs. Q.27325335PubMedGoogle Scholar
  5. 5.
    Udobi, K. F., Childs, E., Touijer, K. 2003Acute respiratory distress syndromeAm. Fam. Phys.67315322Google Scholar
  6. 6.
    Yang, T., Mustafa, F., Bai, S., Ahsan, F. 2004Pulmonary delivery of low molecular weight heparinsPharm. Res.2120092016CrossRefPubMedGoogle Scholar
  7. 7.
    Aguiar, M. M. G., Rodrigues, J. M.,Jr., Cunha, A. S. 2004Encapsulation of insulin–cyclodextrin complex in PLGA microspheres: a new approach for prolonged pulmonary insulin deliveryJ. Microencapsul21553564CrossRefPubMedGoogle Scholar
  8. 8.
    Labiris, N. R., Dolovich, M. B. 2003Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medicationsBr. J. Clin. Pharmacol.56588599CrossRefPubMedGoogle Scholar
  9. 9.
    Labiris, N. R., Dolovich, M. B. 2003Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medicationsBr. J. Clin. Pharmacol.56600612CrossRefPubMedGoogle Scholar
  10. 10.
    Mach, H., Thomson, J. A., Middaugh, C. R., Lewis, R. V. 1991Examination of phenylalanine microenvironments in proteins by second-derivative absorption spectroscopyArch. Biochem. Biophys.2873340CrossRefPubMedGoogle Scholar
  11. 11.
    Mach, H., Middaugh, C. R. 1994Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopyAnal. Biochem.222323331CrossRefPubMedGoogle Scholar
  12. 12.
    Dunn, B. M., Scarborough, P. E., Davenport, R., Swietnicki, W. 1994Analysis of proteinase specificity by studies of peptide substrates. The use of UV and fluorescence spectroscopy to quantitate rates of enzymatic cleavageMethods Mol. Biol.36225243PubMedGoogle Scholar
  13. 13.
    Dunn, J. S., Freed, B. M., Gustafson, D. L., Stringer, K. A. 2005Inhibition of human neutrophil reactive oxygen species production and p67phox translocation by cigarette smoke extractAtherosclerosis179261267CrossRefPubMedGoogle Scholar
  14. 14.
    Gelder, B., Slater, E. C. 1962The extinction coefficient of cytochrome cBiochim. Biophys. Acta58593595CrossRefPubMedGoogle Scholar
  15. 15.
    Swift, D. L. 1993Aerosol characterization and generationMoren, F.Dolovich, M. B.Newhouse, M. T.Newman, S. P. eds. Aerosols in Medicine: Principles, Diagnosis and TherapyElsevierAmsterdam6184Google Scholar
  16. 16.
    Brain, J. D., Blanchard, J. D. 1993Mechanisms of particle deposition and clearanceMoren, F.Dolovich, M. B.Newhouse, M. T.Newman, S. P. eds. Aerosols in Medicine: Principles, Diagnosis and TherapyElsevierAmsterdam124135Google Scholar
  17. 17.
    Cheng, Y. S., Fu, C. S., Yazzie, D., Zhou, Y. 2001Respiratory deposition patterns of salbutamol pMDI with CFC and HFA-134a formulations in a human airway replicaJ. Aerosol Med.14255266CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng, Y. S., Zhou, Y., Chen, B. Y. 1999Particle deposition in a cast of human oral airwaysAerosol Sci. Technol.31286300CrossRefGoogle Scholar
  19. 19.
    Hoang, K. D., Rosen, P. 1992The efficacy and safety of tissue plasminogen activator in acute ischemic strokesJ. Emerg. Med.10345352CrossRefPubMedGoogle Scholar
  20. 20.
    Rutherford, J. D., Braunwald, E. 1990Thrombolytic therapy in acute myocardial infarctionChest97136S145SPubMedGoogle Scholar
  21. 21.
    Stringer, K. A., Dunn, J. S., Gustafson, D. L. 2004Administration of exogenous tissue plasminogen activator reduces oedema in mice lacking the tissue plasminogen activator geneClin. Exp. Pharmacol. Physiol.31327330CrossRefPubMedGoogle Scholar
  22. 22.
    Fulkerson, W. J., MacIntyre, N., Stamlet, J., Crapo, J. D. 1996Pathogenesis and treatment of the adult respiratory distress syndromeArch. Intern. Med.1562938CrossRefPubMedGoogle Scholar
  23. 23.
    Cooper, J. A., Lo, S. K., Malik, A. B. 1988Fibrin is a determinant of neutrophil sequestration in the lungCirc. Res.63735741PubMedGoogle Scholar
  24. 24.
    Lee, W. L., Downey, G. P. 2001Neutrophil activation and acute lung injuryCurr. Opin. Crit. Care717CrossRefPubMedGoogle Scholar
  25. 25.
    Munster, A. M., Bendstrup, E., Jensen, J. I., Gram, J. 2000Jet and ultrasonic nebulization of single chain urokinase plasminogen activator (scu-PA)J. Aerosol Med.13325333PubMedGoogle Scholar
  26. 26.
    Enkhbaatar, P., Murakami, K., Cox, R., Westphal, M., Morita, N., Brantley, K., Burke, A., Hawkins, H., Schmalstieg, F., Traber, L., Herndon, D., Traber, D. 2004Aerosolized tissue plasminogen inhibitor improves pulmonary function in sheep with burn and smoke inhalationShock227075CrossRefPubMedGoogle Scholar
  27. 27.
    Cipolla, D. C., Gonda, I., Shak, S., Kovesdi, I., Crystal, R., Sweeney, T. D. 2000Coarse spray delivery to a localized region of the pulmonary airways for gene therapyHum. Gene Ther.11361371CrossRefPubMedGoogle Scholar
  28. 28.
    Dolovich, M. B., Ahrens, R. C., Hess, D. R., Anderson, P., Dhand, R., Rau, J. L., Smaldone, G. C., Guyatt, G. 2005Device selection and outcomes of aerosol therapy: evidence-based guidelinesChest127335371CrossRefPubMedGoogle Scholar
  29. 29.
    Cefalu, W. T. 2004Evolving strategies for insulin delivery and therapyDrugs6411491161PubMedGoogle Scholar
  30. 30.
    Rau, J. L. 2005The inhalation of drugs: advantages and problemsRespir. Care50367382PubMedGoogle Scholar
  31. 31.
    Idell, S. 2001Anticoagulants for acute respiratory distress syndrome: can they work?Am. J. Respir. Crit. Care Med.164517520PubMedGoogle Scholar
  32. 32.
    Idell, S., Koenig, K. B., Fiar, D. S., Martin, T. R., McLarty, J., Maunder, R. J. 1991Serial abnormalities of fibrin turnover in evolving adult respiratory distress syndromeAm. J. Physiol.261L240L248PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • John S. Dunn
    • 1
  • Rajiv Nayar
    • 2
  • Jackie Campos
    • 2
  • Brooks M. Hybertson
    • 3
  • Yue Zhou
    • 4
  • Mark Cornell Manning
    • 5
  • John E. Repine
    • 3
  • Kathleen A. Stringer
    • 6
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of Colorado Health Sciences CenterDenverUSA
  2. 2.HTD Biosystems, Inc.HerculesUSA
  3. 3.Webb Waring Institute for Antioxidant ResearchUniversity of Colorado Health Sciences CenterDenverUSA
  4. 4.Lovelace Respiratory Research InstituteAlbuquerqueUSA
  5. 5.Legacy BioDesign LLCLovelandUSA
  6. 6.Department of Clinical Pharmacy, School of PharmacyUniversity of Colorado Health Sciences CenterDenverUSA

Personalised recommendations