Pharmaceutical Research

, Volume 22, Issue 9, pp 1445–1453 | Cite as

Influence of Air Flow on the Performance of a Dry Powder Inhaler Using Computational and Experimental Analyses

  • Matthew S. Coates
  • Hak-Kim Chan
  • David F. Fletcher
  • Judy A. Raper
Research Paper


The aims of the study are to analyze the influence of air flow on the overall performance of a dry powder inhaler (Aerolizer®) and to provide an initial quantification of the flow turbulence levels and particle impaction velocities that maximized the inhaler dispersion performance.


Computational fluid dynamics (CFD) analysis of the flowfield in the Aerolizer®, in conjunction with experimental dispersions of mannitol powder using a multistage liquid impinger, was used to determine how the inhaler dispersion performance varied as the device flow rate was increased.


Both the powder dispersion and throat deposition were increased with air flow. The capsule retention was decreased with flow, whereas the device retention first increased then decreased with flow. The optimal inhaler performance was found at 65 l min−1 showing a high fine particle fraction (FPF) of 63 wt.% with low throat deposition (9.0 wt.%) and capsule retention (4.3 wt.%). Computational fluid dynamics analysis showed that at the critical flow rate of 65 l min−1, the volume-averaged integral scale strain rate (ISSR) was 5,400 s−1, and the average particle impaction velocities were 12.7 and 19.0 m s−1 at the inhaler base and grid, respectively. Correlations between the device flow rate and (a) the amount of throat deposition and (b) the capsule emptying times were also developed.


The use of CFD has provided further insight into the effect of air flow on the performance of the Aerolizer®. The approach of using CFD coupled with powder dispersion is readily applicable to other dry powder inhalers (DPIs) to help better understand their performance optimization.

Key Words

CFD, computational fluid dynamics DPI dry powder aerosols inhalation drug delivery 



This work is funded by a grant from the Australian Research Council. Matthew S. Coates is a recipient of an International Postgraduate Research Scholarship. The authors would like to thank Plastiape S.p.A. for the supply of the inhalers.


  1. 1.
    Chew, N. Y. K., Chan, H.-K. 2001In vitro aerosol performance and dose uniformity between the Foradile Aeroliser and the Oxis TurbuhalerJ. Aerosol Med.14495501CrossRefPubMedGoogle Scholar
  2. 2.
    Chew, N. Y. K., Bagster, D. F., Chan, H.-K. 2000Effect of particle size, air flow and inhaler device on the aerosolisation of disodiumcromoglycate powdersInt. J. Pharm.2067583CrossRefPubMedGoogle Scholar
  3. 3.
    Chew, N. Y. K., Chan, H.-K. 1999Influence of particle size, air flow, and inhaler device on the dispersion of mannitol powdersPharm. Res.1610981103CrossRefPubMedGoogle Scholar
  4. 4.
    Borgström, L., Bisgaard, H., O’Callaghan, C., Pedersen, S. 2002Dry-powder inhalersBisgaard, H.O’Callaghan, C.Smaldone, and G. C. eds. Drug Delivery to the LungMarcel Dekker, Inc.New York421448Google Scholar
  5. 5.
    Boer, A. H., Bolhuis, G. K., Gjaltema, D., Hagedoorn, P. 1997Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers. Part 3: the effect of flow increase rate (FIR) on the in vitro drug release from the Pulmicort 200 TurbuhalerInt. J. Pharm.1536777CrossRefGoogle Scholar
  6. 6.
    V. Chavan and R. Dalby. Novel system to investigate the effects of inhaled volume and rates of rise in simulated inspiratory air flow on fine particle output from a dry powder inhaler. AAPS Pharm. Sci. 4(2):Article 6 (2002).Google Scholar
  7. 7.
    ANSYS CFX (2003). (accessed 08/01/04).Google Scholar
  8. 8.
    Meyer, T., Brand, P., Ehlich, H., Koebrich, R., Meyer, G., Riedinger, F., Sommerer, K., Weuthen, T., Scheuch, G. 2004Deposition of foradil P in human lungs: comparison of in vivo and in vitro dataJ. Aerosol Med.174349CrossRefPubMedGoogle Scholar
  9. 9.
    Brannan, J. D., Anderson, S. D., Gomes, K., King, G. G., Chan, H.-K., Seale, J. P. 2001Fexofenadine decreases sensitivity to and montelukast improves recovery from inhaled mannitolAm. J. Respir. Crit. Care Med.163406412PubMedGoogle Scholar
  10. 10.
    Daviskas, E., Anderson, S. D., Gomes, K., Briffa, P., Cochrane, B., Chan, H.-K., Young, I., Rubin, B. K. 2005Inhaled mannitol for the treatment of mucociliary dysfunction in patients with bronchiectasis: effect on lung function, health status and sputumRespirology104656CrossRefPubMedGoogle Scholar
  11. 11.
    Anderson, S. D., Brannan, J. D., Chan, H.-K. 2002Use of aerosols for bronchial provocation testing in the laboratory: where we have been and where we are goingJ. Aerosol Med.15313324CrossRefPubMedGoogle Scholar
  12. 12.
    Daviskas, E., Robinson, M., Anderson, S. D., Bye, P. T. P. 2002Osmotic stimuli increase clearance of mucus in patients with mucociliary dysfunctionJ. Aerosol Med.15331341CrossRefPubMedGoogle Scholar
  13. 13.
    Menter, F. R. 1994Two-equation eddy-viscosity models for engineering applicationsAIAA J.32269289Google Scholar
  14. 14.
    Coates, M. S., Fletcher, D. F., Chan, H.-K., Raper, J. A. 2004Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: grid structure and mouthpiece lengthJ. Pharm. Sci.9328632876CrossRefPubMedGoogle Scholar
  15. 15.
    Coates, M. S., Chan, H.-K., Fletcher, D. F., Raper, J. A. 2005The role of capsule on the performance of a dry powder inhaler using computational and experimental analysesPharm. Res.22923932CrossRefPubMedGoogle Scholar
  16. 16.
    P. G. Stecher, M. Windholz, and D. S. Leahy (eds.). The Merck Index: An Encyclopedia of Chemicals and Drugs, 8th edn., Merck & Co., Inc., Rahway, 1968.Google Scholar
  17. 17.
    Matida, E. A., Finlay, W. H., Lange, C. F., Grgic, B. 2004Improved numerical simulation of aerosol deposition in an idealized mouth–throatJ. Aerosol Sci.35119CrossRefGoogle Scholar
  18. 18.
    Matida, E. A., DeHann, W. H., Finlay, W. H., Lange, C. F. 2003Simulation of particle deposition in an idealized mouth with different small diameter inletsAerosol Sci. Tech.37924932CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Finlay, W. H., Matida, E. A. 2004Particle deposition measurements and numerical simulation in a highly idealized mouth–throatJ. Aerosol Sci.35789803CrossRefGoogle Scholar
  20. 20.
    British Pharmacopoeia, Appendix XII, Aerodynamic assessment of fine particles—Fine particle dose and particle size distribution, Apparatus C (2001).Google Scholar
  21. 21.
    Asking, L., Olsson, B. 1997Calibration at different flow rates of a multistage liquid impingerAerosol Sci. Tech.273949Google Scholar
  22. 22.
    Finlay, W. H. 2001The Mechanics of Inhaled Pharmaceutical AerosolsAcademic Press Inc. Ltd.LondonGoogle Scholar
  23. 23.
    Voss, A., Finlay, W. H. 2002Deagglomeration of dry powder pharmaceutical aerosolsInt. J. Pharm.2483950CrossRefPubMedGoogle Scholar
  24. 24.
    Begat, P., Morton, D. A. V., Staniforth, J. N., Price, R. 2004The cohesive–adhesive balances in dry powder inhaler formulations I: Direct quantification by atomic force microscopyPharm. Res.2115911597CrossRefPubMedGoogle Scholar
  25. 25.
    Louey, M. D., Stewart, P. J. 2002Particle interactions involved in aerosol dispersion of ternary interactive mixturesPharm. Res.1915241531CrossRefPubMedGoogle Scholar
  26. 26.
    Yang, R. Y., Zou, R. P., Yu, A. B. 2000Computer simulation of the packing of fine particlesPhys. Rev. E.6239003908CrossRefGoogle Scholar
  27. 27.
    Moreno, R., Ghadiri, M., Antony, S. J. 2003Effect of the impact angle on the breakage of agglomerates: a numerical study using DEMPowder Technol.130132137CrossRefGoogle Scholar
  28. 28.
    Subero, J., Ning, Z., Ghadiri, M., Thornton, C. 1999Effect of interface energy on the impact strength of agglomeratesPowder Technol.1056673CrossRefGoogle Scholar
  29. 29.
    Grgic, B., Finlay, W. H., Burnell, P. K. P., Heenen, A. F. 2004In vitro intersubject and intrasubject deposition measurements in realistic mouth–throat geometriesJ. Aerosol Sci.3510251040CrossRefGoogle Scholar
  30. 30.
    Stahlhofen, W., Rudolf, G., James, A. C. 1989Intercomparison of experimental regional aerosol deposition dataJ. Aerosol Med.2285308Google Scholar
  31. 31.
    Finlay, W. H., Zhang, Y., Grgic, B., Heenan, A., Burnell, P., Matida, E. A., Pollard, A., Lange, C. F. 2004Solving a major in vitroin vivo correlation problem: impactor induction portsDalby, R. N.Byron, P. R.Peart, J.Peart, J. D.Farr, S. J. eds. Respiratory Drug Delivery IXDavis Healthcare Int. PublishingRiver Grove, IL203209Google Scholar
  32. 32.
    Chew, N. Y. K., Chan, H.-K., Bagster, D. F., Mukhraiya, J. 2002Characterization of pharmaceutical powder inhalers: estimation of energy input for powder dispersion and effect of capsule device configurationJ. Aerosol Sci.339991008CrossRefGoogle Scholar
  33. 33.
    Clark, A. R., Bailey, R. 1996Inspiratory flow profiles in disease and their effects on the delivery characteristics of dry powder inhalersDalby, R. N.Byron, P. R.Farr, S. J. eds. Respiratory Drug Delivery VInterpharm PressBuffalo Grove, IL221230Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Matthew S. Coates
    • 1
    • 2
  • Hak-Kim Chan
    • 2
  • David F. Fletcher
    • 1
  • Judy A. Raper
    • 1
    • 3
  1. 1.Department of Chemical EngineeringUniversity of SydneySydneyAustralia
  2. 2.Faculty of PharmacyUniversity of SydneySydneyAustralia
  3. 3.Department of Chemical EngineeringUniversity of Missouri-RollaUSA

Personalised recommendations