Pharmaceutical Research

, Volume 22, Issue 8, pp 1320–1330 | Cite as

Liposomal Formulations of Inflammatory Bowel Disease Drugs: Local versus Systemic Drug Delivery in a Rat Model

  • Filippos Kesisoglou
  • Simon Yuji Zhou
  • Susan Niemiec
  • Jordan Wing Lee
  • Ellen M. Zimmermann
  • David Fleisher
Research Paper


Based on adherence to intestinal mucosa, intralumenally administered liposomal formulations of 5-aminosalicylate (5-ASA) and 6-mercaptopurine (6-MP) were studied for their potential to enhance local drug delivery to intestinal tissue for the treatment of inflammatory bowel disease.


5-ASA was encapsulated in standard phospholipid liposomes while 6-MP required encapsulation in nonphospholipid liposomes to obtain equivalent drug loading. Encapsulation efficiency was measured by size-exclusion chromatography/high-performance liquid chromatogtaphy (HPLC). Liposomal formulations or solution of the drugs were injected into unligated jejunum to compare pharmacokinetics and into ligated loops of rat ileum and colon to evaluate local delivery. Dextran sulfate and acetic acid induced colitis were used as models of lower intestinal inflammation. Plasma, tissue and luminal drug and metabolite levels were measured by liquid scintillation counting or HPLC.


Encapsulation efficiency of 6-MP was dependent on lipid content and composition. While liposomal encapsulation significantly reduced systemic absorption of 5-ASA this was not the case for 6-MP. Liposomal adherence to intestinal tissue resulted in increased tissue levels for 5-ASA; however, 6-MP local tissue levels were not improved compared to solution drug.


Nonphospholipid liposomes optimize encapsulation of 6-MP. While liposomal formulations show potential for local drug delivery to diseased bowel, drug physicochemical properties, absorption, and metabolic profiles dictate tissue-targeting potential. Liposomes reduce systemic availability from paracellular absorption of hydrophilic 5-ASA, but fail to improve local tissue delivery of 6-MP, a molecule absorbed by passive membrane permeation that undergoes extensive first- pass metabolism.

Key Words

absorption drug delivery inflammatory bowel disease intestine liposomes 





fetal bovine serum


glyceryl distearate


high-performance liquid chromatography


inflammatory bowel disease


irritable bowel system




nonessential amino acids


nuclear magnetic resonance


phosphate-buffered saline


polyoxyethylene stearyl ether


  1. 1.
    Phillips, S. F. 2000Pathophysiology of symptoms and clinical features of inflammatory bowel diseaseKirsner, J. B. eds. Inflammatory Bowel DiseaseW.B. SaundersPhiladelphia358371Google Scholar
  2. 2.
    Campieri, M., Adamo, S., Valpiani, D., D’Arienzo, A., D’Albasio, G., Pitzalis, M., Cesari, P., Casetti, T., Castiglione, G. N., Rizzello, F., Manguso, F., Varoli, G., Gionchetti, P. 2003Oral beclometasone dipropionate in the treatment of extensive and left-sided active ulcerative colitis: a multicentre randomised studyAliment. Pharmacol. Ther.1714711480CrossRefPubMedGoogle Scholar
  3. 3.
    Sandborn, W. J., Hanauer, S. B. 2003Systematic review: the pharmacokinetic profiles of oral mesalazine formulations and mesalazine pro-drugs used in the management of ulcerative colitisAliment. Pharmacol. Ther.172942CrossRefPubMedGoogle Scholar
  4. 4.
    M. Robinson. Medical therapy of inflammatory bowel disease for the 21st century. Eur. J. Surg. Suppl. 164:90–98 (1998).Google Scholar
  5. 5.
    Edsbacker, S., Larsson, P., Wollmer, P. 2002Gut delivery of budesonide, a locally active corticosteroid, from plain and controlled-release capsulesEur. J. Gastroenterol. Hepatol.1413571362CrossRefPubMedGoogle Scholar
  6. 6.
    McClean, S., Prosser, E., Meehan, E., O’Malley, D., Clarke, N., Ramtoola, Z., Brayden, D. 1998Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epitheliaEur. J. Pharm. Sci.6153163CrossRefPubMedGoogle Scholar
  7. 7.
    Lamprecht, A., Schafer, U., Lehr, C. M. 2001Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosaPharm. Res.18788793CrossRefPubMedGoogle Scholar
  8. 8.
    Lamprecht, A., Ubrich, N., Yamamoto, H., Schafer, U., Takeuchi, H., Maincent, P., Kawashima, Y., Lehr, C. M. 2001Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel diseaseJ. Pharmacol. Exp. Ther.299775781PubMedGoogle Scholar
  9. 9.
    Nakase, H., Okazaki, K., Tabata, Y., Chiba, T. 2003Biodegradable microspheres targeting mucosal immune-regulating cells: new approach for treatment of inflammatory bowel diseaseJ. Gastroenterol.385962PubMedGoogle Scholar
  10. 10.
    Nakase, H., Okazaki, K., Tabata, Y., Uose, S., Ohana, M., Uchida, K., Nishi, T., Debreceni, A., Itoh, T., Kawanami, C., Iwano, M., Ikada, Y., Chiba, T. 2001An oral drug delivery system targeting immune-regulating cells ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitisJ. Pharmacol. Exp. Ther.29711221128PubMedGoogle Scholar
  11. 11.
    Nakase, H., Okazaki, K., Tabata, Y., Uose, S., Ohana, M., Uchida, K., Matsushima, Y., Kawanami, C., Oshima, C., Ikada, Y., Chiba, T. 2000Development of an oral drug delivery system targeting immune-regulating cells in experimental inflammatory bowel disease: a new therapeutic strategyJ. Pharmacol. Exp. Ther.2921521PubMedGoogle Scholar
  12. 12.
    Jubeh, T. T., Barenholz, Y., Rubinstein, A. 2004Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomesPharm. Res.21447453CrossRefPubMedGoogle Scholar
  13. 13.
    Haagen Nielsen, O., Bondesen, S. 1983Kinetics of 5-aminosalicylic acid after jejunal instillation in manBr. J. Clin. Pharmacol.16738740PubMedGoogle Scholar
  14. 14.
    Niemiec, S. M., Latta, J. M., Ramachandran, C., Weiner, N. D., Roessler, B. J. 1997Perifollicular transgenic expression of human interleukin-1 receptor antagonist protein following topical application of novel liposome-plasmid DNA formulations invivoJ. Pharm. Sci.86701708CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou, S. Y., Fleisher, D., Pao, L. H., Li, C., Winward, B., Zimmermann, E. M. 1999Intestinal metabolism and transport of 5-aminosalicylateDrug Metab. Dispos.27479485PubMedGoogle Scholar
  16. 16.
    Gulati, M., Grover, M., Singh, M., Singh, S. 1998Study of azathioprine encapsulation into liposomesJ. Microencapsul15485494PubMedGoogle Scholar
  17. 17.
    Fleisher, D., Sheth, N., Griffin, H., McFadden, M., Aspacher, G. 1989Nutrient influences on rat intestinal phenytoin uptakePharm. Res.6332337CrossRefPubMedGoogle Scholar
  18. 18.
    Pennington, A. M., Bronk, J. R. 1995The absorption of 6-mercaptopurine from 6-mercaptopurine riboside in rat small intestine: effect of phosphateCancer Chemother. Pharmacol.36136142PubMedGoogle Scholar
  19. 19.
    Ravis, W. R., Wang, J. S., Feldman, S. 1984Intestinal absorption and metabolism of 6-mercaptopurine in the rat small intestineBiochem. Pharmacol.33443448CrossRefPubMedGoogle Scholar
  20. 20.
    Elson, C. O., Sartor, R. B., Tennyson, G. S., Riddell, R. H. 1995Experimental models of inflammatory bowel diseaseGastroenterology10913441347PubMedGoogle Scholar
  21. 21.
    Tsujii, K., Sunamoto, J., Fendler, J. H. 1976Improved entrapment of drugs in modified liposomesLife Sci.1917431749CrossRefPubMedGoogle Scholar
  22. 22.
    Chrzanowska, M., Kuehn, M., Hermann, T., Neubert, R. H. 2003Biopharmaceutical characterization of some synthetic purine drugsPharmazie58504506PubMedGoogle Scholar
  23. 23.
    Lamprecht, A., Rodero Torres, H., Schafer, U., Lehr, C. M. 2000Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel diseaseJ. Control. Release69445454CrossRefPubMedGoogle Scholar
  24. 24.
    Desai, M. P., Labhasetwar, V., Amidon, G. L., Levy, R. J. 1996Gastrointestinal uptake of biodegradable microparticles: effect of particle sizePharm. Res.1318381845CrossRefPubMedGoogle Scholar
  25. 25.
    Weiner, N., Lieb, L., Niemiec, S., Ramachandran, C., Hu, Z., Egbaria, K. 1994Liposomes: a novel topical delivery system for pharmaceutical and cosmetic applicationsJ. Drug Target2405410PubMedGoogle Scholar
  26. 26.
    Mielants, H., De Vos, M., Goemaere, S., Schelstraete, K., Cuvelier, C., Goethals, K., Maertens, M., Ackerman, C., Veys, E. M. 1991Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of diseaseJ. Rheumatol.18394400PubMedGoogle Scholar
  27. 27.
    Pao, L. H., Zhou, S. Y., Cook, C., Kararli, T., Kirchhoff, C., Truelove, J., Karim, A., Fleisher, D. 1998Reduced systemic availability of an antiarrhythmic drug, bidisomide, with meal co-administration: relationship with region-dependent intestinal absorptionPharm. Res.15221227CrossRefPubMedGoogle Scholar
  28. 28.
    Bronk, J. R., Lister, N., Shaw, M. I. 1988Transport and metabolism of 6-thioguanine and 6-mercaptopurine in mouse small intestineClin. Sci. (Lond.)74629638Google Scholar
  29. 29.
    Sasaki, H., Tsuru, K., Nakamura, J., Konishi, R., Shibasaki, J. 1987Effect of allopurinol on the intestinal absorption of 6-mercaptopurine in ratsJ. Pharmacobiodyn.10697702PubMedGoogle Scholar
  30. 30.
    Sasaki, H., Nakamura, J., Konishi, R., Shibasaki, J. 1986Intestinal absorption characteristics of 5-fluorouracil, ftorafur and 6-mercaptopurine in ratsChem. Pharm. Bull (Tokyo)3442654272Google Scholar
  31. 31.
    Taneja, D., Namdeo, A., Mishra, P. R., Khopade, A. J., Jain, N. K. 2000High-entrapment liposomes for 6-mercaptopurine—a pro dug approachDrug. Dev. Ind. Pharm.2613151319CrossRefPubMedGoogle Scholar
  32. 32.
    Takeichi, Y., Kimura, T. 1994Improvement of aqueous solubility and rectal absorption of 6-mercaptopurine by addition of sodium benzoateBiol. Pharm. Bull.1713911394PubMedGoogle Scholar
  33. 33.
    French, D. L., Mauger, J. W. 1993Evaluation of the physiocochemical properties and dissolution characteristics of mesalamine: relevance to controlled intestinal drug deliveryPharm. Res.1012851290CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Filippos Kesisoglou
    • 1
    • 2
  • Simon Yuji Zhou
    • 1
  • Susan Niemiec
    • 3
  • Jordan Wing Lee
    • 1
  • Ellen M. Zimmermann
    • 2
  • David Fleisher
    • 1
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyThe University of MichiganAnn ArborUSA
  2. 2.Division of Gastroenterology, Department of Internal MedicineThe University of MichiganAnn ArborUSA
  3. 3.Pfizer Global Research and DevelopmentAnn Arbor LaboratoriesAnn ArborUSA

Personalised recommendations