Pharmaceutical Research

, Volume 22, Issue 7, pp 1079–1087 | Cite as

3D-Resolved Investigation of the pH Gradient in Artificial Skin Constructs by Means of Fluorescence Lifetime Imaging

  • Raluca Niesner
  • Bülent Peker
  • Peter Schlüsche
  • Karl-Heinz Gericke
  • Christine Hoffmann
  • Dagmar Hahne
  • Christel Müller-Goymann
Research Paper

Purpose

The development of substitutes for the human skin, e.g., artificial skin constructs (ASCs), is of particular importance for pharmaceutical and dermatologic research because they represent economical test samples for the validation of new drugs. In this regard, it is essential for the skin substitutes to be reliable models of the genuine skin, i.e., to have similar morphology and functionality. Particularly important is the barrier function, i.e., the selective permeability of the skin, which is strongly related to the epidermal pH gradient. Because the pH significantly influences the permeation profile of ionizable drugs such as nonsteroidal anti-inflammatory drugs, it is of major importance to quantitatively measure the epidermal pH gradient of the ASC and compare it to that of genuine skin.

Methods

Using three-dimensional fluorescence lifetime imaging combined with two-photon scanning microscopy, we measured with submicron resolution the three-dimensional pH gradient in the epidermis of ASCs stained with 2′,7′-bis-(2-carboxyethyl)-5/6-carboxyfluorescein.

Results

Similar to genuine skin, the surface of the artificial epidermis has an acidic character (pH 5.9), whereas in the deeper layers the pH increases up to 7.0. Moreover, the pH gradient differs in the cell interior (maximally 7.2) and in the intercellular matrix (maximally 6.6). Apart from the similitude of the pH distribution, the genuine and the artificial skin prove to have similar morphologies and to be characterized by similar distributions of the refractive index.

Conclusions

Artificial skin is a reliable model of genuine human skin, e.g., in permeability studies, because it is characterized by a similar pH gradient, a similar morphology, and a similar distribution of the refractive index to that of genuine skin.

Key Words

artificial skin constructs barrier function epidermal pH gradient fluorescence lifetime imaging 

References

  1. 1.
    Specht, C., Stoye, I., Müller-Goymann, C. C. 1998Comparative investigations to evaluate the use of organotypic cultures of transformed and native dermal and epidermal cells for permeations studiesEur. J. Pharm. Biopharm.46273278Google Scholar
  2. 2.
    Wasserman, K., Müller-Goymann, C. C. 2000Standardized cultivation of artificial skin constructs for drug permeation studiesArch. Pharm. Pharm. Med. Chem.33334(Abstract)Google Scholar
  3. 3.
    Hadgraft, J., Valenta, C. 2000pH, pK(a) and dermal deliveryInt. J. Pharm.200243247Google Scholar
  4. 4.
    Kalia, Y. N., Pirot, F., Potts, R. O., Guy, R. H. 1998Ion mobility across human stratum corneum in vivoJ. Pharm. Sci.8715081511Google Scholar
  5. 5.
    Smith, J. C., Irwin, W. J. 2000Ionisation and the effect of absorption enhancers on transport of salicylic acid through rubber and human skinInt. J. Pharm.2106982Google Scholar
  6. 6.
    Marro, D., Guy, R. H., Delgado-Charro, M. B. 2001Characterisation of the iontophoretic permselectivity properties of human and pig skinJ. Control. Rel.70213217Google Scholar
  7. 7.
    Hanson, K. M., Behne, M. J., Barry, N. P., Mauro, T. M., Gratton, E., Clegg, R. M. 2002Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradientBiophys. J.8316821690Google Scholar
  8. 8.
    Corcuff, P., Lévêque, J.-L. 1993In vivo vision of the human skin with the tandem scanning microscopeDermatology1865054Google Scholar
  9. 9.
    Masters, B. R., So, P. T. C., Gratton, E. 1998Multiphoton excitation microscopy of in vivo human skin. Functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopyAnn. N.Y. Acad. Sci.8385867Google Scholar
  10. 10.
    Masters, B. R., So, P. T. C., Gratton, E. 1998Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skinBiophys. J.7224052412Google Scholar
  11. 11.
    König, K., Wollina, U., Riemann, I., Peuckert, C., Halbhuber, K.-J., Konrad, H., Fischer, P., Fünfstück, V., Fischer, T., Elsner, P. 2002Optical tomography of human skin with subcellular spatial and picosecond time resolution using intense near infrared femtosecond laser pulsesSPIE4620191201Google Scholar
  12. 12.
    So, P. T. C., Kim, H., Kochevar, I. E. 1998Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structuresOpt. Express3339350Google Scholar
  13. 13.
    Denk, W., Strickler, J. H., Webb, W. W. 1990Two-photon laser scanning fluorescence microscopyScience2487376Google Scholar
  14. 14.
    König, K. 2000Multiphoton microscopy in life sciencesJ. Microsc.20083104Google Scholar
  15. 15.
    Gratton, E., Barry, N. P., Beretta, S., Celli, A. 2001Multiphoton fluorescence microscopyMethods25103110Google Scholar
  16. 16.
    Szmacinski, H., Lakowicz, J. R. 1993Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorimetryAnal. Chem.6516681674Google Scholar
  17. 17.
    Behne, M. J., Meyer, J. W., Hanson, K. M., Barry, N. P., Murata, S., Crumrine, D., Clegg, R. W., Gratton, E., Holleran, W. M., Elias, P. M., Mauro, T. M. 2002NHE1 regulates the stratum corneum permeability barrier homeostasisJ. Biol. Chem.2774739947406Google Scholar
  18. 18.
    Lakowicz, J. R., Berndt, K. 1991Lifetime-selective fluorescence imaging using a rf phase-sensitive cameraRev. Sci. Instrum.6217271734Google Scholar
  19. 19.
    W. Becker and A. Bergmann. Lifetime imaging techniques for optical microscopy. http://www.becker-hickl.de/pdf/tcvgbhl.pdf (2003).
  20. 20.
    Draaijer, A., Sanders, R., Gerritsen, H. C. 1995Pawley, J. eds. Handbook of Biological Confocal MicroscopyPlenumNew York491505Google Scholar
  21. 21.
    Lakowicz, J. R., Szmacinski, H., Johnson, M. L. 1992Calcium imaging using fluorescence lifetimes and long-wavelength probesJ. Fluoresc.24762Google Scholar
  22. 22.
    Murata, S., Herman, P., Lakowicz, J. R. 2001Texture analysis of fluorescence lifetime images of nuclear DNA with effect of fluorescence resonance energy transferCytometry4394100Google Scholar
  23. 23.
    Elson, D., Webb, S., Siegel, J., Suhling, K., Davis, D., Lever, J., Phillips, D., Wallance, A., French, P., Lauritsen, K., Wahl, M., Erdmann, R. 2002Fluorescence lifetime system for microscopy and multiwell plate imaging with a blue picosecond diode laserOpt. Lett.2714091411Google Scholar
  24. 24.
    Niesner, R., Peker, B., Schlüsche, P., Gericke, K.-H. 2004Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescenceChem. Phys. Chem.511411149Google Scholar
  25. 25.
    Barzda, V., Grauw, C. J., Vroom, J., Kleima, F. J., Grondelle, R., Amerongen, H., Gerritsen, H. C. 2001Fluorescence lifetime heterogeneity in aggregates of LHC II revealed by time-resolved microscopyBiophys. J.81538546Google Scholar
  26. 26.
    Squire, A., Verveer, P. J., Bastiaens, P. I. H. 2000Multiple frequency fluorescence lifetime imaging microscopyJ. Microsc.197136149Google Scholar
  27. 27.
    Verveer, P. J., Squire, A., Bastiaens, P. I. H. 2000Global analysis of fluorescence lifetime imaging microscopy dataBiophys. J.7821272137Google Scholar
  28. 28.
    Gratton, E., Breusegem, S., Sutin, J., Ruan, Q., Barry, N. 2003Fluorescence lifetime imaging for two-photon microscope: time-domain and frequency-domain methodsJ. Biomed. Opt.8381390Google Scholar
  29. 29.
    W. Becker, A. Bergmann, C. Biskup, T. Zimmer, N. Klöcker, and K. Benndorf. High resolution TCSPC lifetime imaging. Proc. SPIE 4620 (2002).Google Scholar
  30. 30.
    Deng, X., Gan, X., Gu, M. 2002Multiphoton fluorescence microscopic imaging through double-layer turbid tissue mediaJ. Appl. Phys.9146594665Google Scholar
  31. 31.
    Mertz, J., Xu, C., Webb, W. W. 1995Single-molecule detection by two-photon-excited fluorescenceOpt. Lett.2025322534Google Scholar
  32. 32.
    Szmacinski, H., Gryczynski, I., Lakowicz, J. R. 1998Spatially localized ballistic two-photon excitation in scattering mediaBiospectroscopy4303310Google Scholar
  33. 33.
    Schönle, A., Glatz, M., Hell, S. W. 2000Four-dimensional multiphoton microscopy with time-correlated single-photon countingAppl. Opt.3963066311Google Scholar
  34. 34.
    Strickler, S. J., Berg, R. A. 1962Relationship between absorption intensity and fluorescence lifetime of moleculesJ. Chem. Phys.37814822Google Scholar
  35. 35.
    Caspers, P. J., Lucassen, G. W., Carter, E. A., Bruining, H. A., Puppels, G. J. 2001In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profilesJ. Invest. Dermatol.116434442Google Scholar
  36. 36.
    Zvyagin, A. V., Dilusha Silva, K. K. M. B., Alexandrov, S. A., Hillman, T.R., Armstrong, J. J. 2003Refractive index tomography of turbid media by bifocal optical coherence refractometryOpt. Express2535033517Google Scholar
  37. 37.
    Alexandrov, S. A., Zvyagin, A. V., Dilusha Silva, K. K. M. B., Sampson, D. D. 2003Bifocal optical coherence refractometry of turbid mediaOpt. Express2117119Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Raluca Niesner
    • 1
  • Bülent Peker
    • 1
  • Peter Schlüsche
    • 1
  • Karl-Heinz Gericke
    • 1
  • Christine Hoffmann
    • 2
  • Dagmar Hahne
    • 2
  • Christel Müller-Goymann
    • 2
  1. 1.Institute for Physical and Theoretical ChemistryTechnical UniversityBraunschweigGermany
  2. 2.Institute for Pharmaceutical TechnologyTechnical UniversityBraunschweigGermany

Personalised recommendations