Advertisement

Pharmaceutical Research

, Volume 22, Issue 8, pp 1227–1235 | Cite as

The Use of a Sum of Inverse Gaussian Functions to Describe the Absorption Profile of Drugs Exhibiting Complex Absorption

  • Chantal Csajka
  • David Drover
  • Davide VerottaEmail author
Research Paper

Purpose

The aim of this study was to evaluate the utility of a parametric deconvolution method using a sum of inverse Gaussian functions (IG) to characterize the absorption and concentrations vs. time profile of drugs exhibiting complex absorption.

Methods

For a linear time-invariant system the response, Y(t), following an arbitrary input function I(t), is the convolution of I(t) with the disposition function, H(t), of the system: \(Y{\left( t \right)} = {\int\limits_0^t {I{\left( \tau \right)}H{\left( {t - \tau } \right)}d\tau } }\). The method proposed uses a sum of n inverse Gaussian functions to characterize I(t). The approach was compared with a standard nonparametric method using linear splines. Data were provided from previously published studies on two drugs (hydromorphone and veralipride) showing complex absorption and analyzed with NONMEM®.

Results

A satisfactory fit for hydromorphone and veralipride data following oral administration was achieved by fitting a sum of two or three IG functions. The predictions of the input functions were very similar to those using linear splines.

Conclusions

The use of a sum of IG as opposed to nonparametric functions, such as splines, offers a simpler implementation, a more intuitive interpretation of the results, a built-in extrapolation, and an easier implementation in a population context. Disadvantages are an apparent greater sensitivity to initial value estimates (when used with NONMEM®).

Key Words

complex absorption input model inverse Gaussian functions pharmacokinetics splines 

Notes

Acknowledgment

This study was supported by NIH Grant A150587.

References

  1. 1.
    Prescott, L. F. 1974Gastrointestinal absorption of drugsMed. Clin. N. Am.58517Google Scholar
  2. 2.
    Verotta, D. 1996Concepts, properties and applications of linear systems to describe distribution, identify input, and control endogenous substances and drugs in biological systemsCrit. Rev. Biomed. Eng.2473139PubMedGoogle Scholar
  3. 3.
    DeBoor, C. 1978A Practical Guide to SplineSpringer-VerlagNew YorkGoogle Scholar
  4. 4.
    Ishii, K., Katayama, Y., Itai, S., Ito, Y., Hayashi, H. 1995A new pharmacokinetic model including in vivo dissolution and gastrointestinal transit parametersBiol. Pharm. Bull.18 882886PubMedGoogle Scholar
  5. 5.
    Plusquellec, Y., Campistron, G., Staveris, S., Barre, J., Jung, L., Tillement, J. P., Houin, G. 1987A double-peak phenomenon in the pharmacokinetics of veralipride after oral administration: a double-site model for drug absorptionJ. Pharmacokinet. Pharmacodyn.15225239Google Scholar
  6. 6.
    Suverkrup, R. 1979Discontinuous absorption processes in pharmacokinetic modelsJ. Pharm. Sci.6813951400PubMedGoogle Scholar
  7. 7.
    Murata, K., Noda, K., Kohno, K., Samejima, M. 1987Pharmacokinetic analysis of concentration data of drugs with irregular absorption profiles using multi-function absorption modelsJ. Pharm. Sci.76109113PubMedGoogle Scholar
  8. 8.
    Higaki, K., Yamashita, S., Amidon, G. L. 2001Time-dependent oral absorption modelsJ. Pharmacokinet. Pharmacodyn.28109128CrossRefPubMedGoogle Scholar
  9. 9.
    Oberle, R. L., Amidon, G. L. 1987The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine: an explanation for the double peak phenomenonJ. Pharmacokinet. Biopharm.15539544CrossRefGoogle Scholar
  10. 10.
    Weiss, M. 1996A novel extravascular input function for the assessment of drug absorption in bioavailabilities studiesPharm. Res.1315471553CrossRefPubMedGoogle Scholar
  11. 11.
    Fattinger, K. E., Verotta, D. 1995A nonparametric subject-specific population method for deconvolution: I. Description, internal validation, and real data examplesJ. Pharmacokinet. Biopharm.23581610PubMedGoogle Scholar
  12. 12.
    Drover, D. R., Angst, M. S., Valle, M., Ramaswamy, B., Naidu, S., Stanski, D. R., Verotta, D. 2002Input characteristics and bioavailability after administration of immediate and a new extended-release formulation of hydromorphone in healthy volunteersAnesthesiology97827836CrossRefPubMedGoogle Scholar
  13. 13.
    Boeckmann, A. J., Beal, S. L., Sheiner, L. B. 1992NONMEM Users’ GuidesNONMEM Project Group, University of California at San FranciscoSan Franciscohttp://www.globomax. net/products/nonmem.cfmGoogle Scholar
  14. 14.
    Akaike, A. 1974A new look at the statistical model identification problemIEEE Trans. Automat. Contr.19716723CrossRefGoogle Scholar
  15. 15.
    Hannan, E. J. 1987Rational transfer function approximationStat. Sci.210291054Google Scholar
  16. 16.
    Schwartz, G. 1978Estimating the dimension of a modelAnn. Stat.6461464Google Scholar
  17. 17.
    S-Plus Software, Statistical Sciences, Version 4.0 Release 2, 1997. http://www.statsci.org/splus.html.
  18. 18.
    Veng-Pedersen, P., Berg, M. J., Schottelius, D. D. 1986Linear system approach for the analysis of an induced drug removal process. Phenobarbital removal by oral activated charcoalJ. Pharmacokinet. Biopharm.141928CrossRefPubMedGoogle Scholar
  19. 19.
    Zhou, H. 2003Pharmacokinetic strategies in deciphering atyptical drug absorption profilesJ. Clin. Pharmacol.43211227CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biopharmaceutical SciencesUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of AnesthesiaStanford University School of MedicineStanfordUSA
  3. 3.Department of BiostatisticsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations