Pharmaceutical Research

, Volume 22, Issue 5, pp 816–825

Surface Energy and Interparticle Force Correlation in Model pMDI Formulations

  • Daniela Traini
  • Philippe Rogueda
  • Paul Young
  • Robert Price
Research Paper

Abstract

Purpose.

To compare experimental measurements of particle cohesion and adhesion forces in a model propellant with theoretical measurements of the interfacial free energy of particulate interactions; with the aim of characterizing suspension stability of pressurized metered dose inhalers (pMDIs).

Methods.

Interparticulate forces of salbutamol sulfate, budesonide, and formoterol fumarate dihydrate were investigated by in situ atomic force microscopy (AFM) in a model propellant 2H,3H perfluoropentane. The surface thermodynamic properties were determined by contact angle (CA) and inverse gas chromatography (IGC). Experimental data were compared with theoretical work of adhesion/cohesion using a surface component approach (SCA), taking into account both dispersive and polar contributions of the surface free energy.

Results.

Results indicated that the measured forces of interaction between particles in model propellant could not be accounted for by theoretical treatment of the dispersive surface free energies via CA and IGC. A correlation between theoretical work of adhesion/cohesion and AFM measurements was observed upon the introduction of the polar interfacial interactions within the SCA model.

Conclusions.

It is suggested that the polar contributions of the surface free energy measurements of particles may play a crucial role in particle interaction within propellant-based systems. Together with the application of a SCA model, this approach may be capable of predicting suspension stability of pMDI formulations.

Key words:

AFM pMDI surface energy suspension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. D. Ganderton and T. Jones. Drug Delivery to the Respiratory Tract, Academic Press, London, 1987.Google Scholar
  2. 2.
    2. J. S. Patton. Mechanisms of macromolecule absorption by the lungs. Adv. Drug Deliv. Rev. 19:3–36 (1996).CrossRefGoogle Scholar
  3. 3.
    3. D. L. Ross and B. J. Gabrio. Advances in metered dose inhaler technology with the development of a chlorofluorocarbon free drug delivery system. J. Aerosol Med. 12:151–160 (1999).PubMedGoogle Scholar
  4. 4.
    4. H. D. C. Smyth. The influence of formulation variables on the performances of alternative propellant-driven metered dose inhalers. Adv. Drug Deliv. Rev. 55:807–828 (2003).CrossRefPubMedGoogle Scholar
  5. 5.
    5. D. Ganderton. Patients, devices and formulations. J. Aerosol Med. 23:441–444 (2003).Google Scholar
  6. 6.
    6. J. A. Ranucci, S. Dixit, R. N. J. Bray, and D. Goldman. Controlled flocculation in meterd-dose aerosol suspensions. Pharmacetical Technology 0:68–73 (1990).Google Scholar
  7. 7.
    7. Y. Michael, M. J. Snowden, B. Z. Chowdhry, I. C. Ashurst, C. J. Davies-Cutting, and T. Ripley. Characterisation of the aggregation behaviour in a salmeterol and fluticasone propionate inhalation aerosol system. Int. J. Pharm. 221:165–174 (2001).CrossRefPubMedGoogle Scholar
  8. 8.
    8. E. M. Phillips, P. R. Byron, and R. N. Dalby. Axial-ratio measurements for early detection of crystal-growth in suspension-type metered dose inhalers. Pharm. Res. 10:454–456 (1993).Google Scholar
  9. 9.
    9. C. J. van Oss. Interfacial Forces in Aqueous Media, Marcel Dekker, New York, 1994.Google Scholar
  10. 10.
    10. R. J. Good. Contact-angle, wetting, and adhesion—a critical-review. J. Adhes. Sci. Technol. 6:1269–1302 (1992).Google Scholar
  11. 11.
    11. M. D. Ticehurst, R. C. Rowe, and P. York. Determination of the surface properties of two batches of ss by inverse gas chromatography. Int. J. Pharm. 111:241–249 (1994).Google Scholar
  12. 12.
    12. O. Planinsek and G. Buckton. Inverse gas chromatography: considerations about appropriate use for amorphous and crystalline powders. J. Pharm. Sci. 92:1286–1294 (2003).PubMedGoogle Scholar
  13. 13.
    13. G. Binnig and C. F. Quate. Atomic force microscope. Phys. Rev. Lett. 56:930–933 (1986).PubMedGoogle Scholar
  14. 14.
    14. R. Ashayer, P. F. Luckham, S. Manimaaran, and P. Rogueda. Investigation of the molecular interactions in a pMDI formulation by atomic force microscopy. Eur. J. Pharm. Sci. 21:533–543 (2004).Google Scholar
  15. 15.
    15. P. Young, R. Price, D. Lewis, S. Edge, and D. Traini. Under pressure: predicting pressurized metered dose inhaler interactions using the atomic force microscope. J. Colloid Interface Sci. 262:298–302 (2003).Google Scholar
  16. 16.
    16. F. M. Fowkes. Additivity of intermolecular forces at interfaces. I. Determination of the contribution to surface and interfacial tension of dispersion forces in various liquids. J. Phys. Chem. 67:2538–2541 (1963).Google Scholar
  17. 17.
    17. R. J. Good and L. A. Girifalco. A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J. Phys. Chem. 64:561–565 (1960).Google Scholar
  18. 18.
    18. B. V. Derjaguin and L. D. Landau. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica. U.S.S.R. 14:663 (1941).Google Scholar
  19. 19.
    19. E. J. W. Verwey and J. T. G. Overbeek. Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.Google Scholar
  20. 20.
    20. C. Vervaet and P. R. Byron. Drug surfactant propellant interactions in HFA formulations. Int. J. Pharm. 186:13–30 (1999).PubMedGoogle Scholar
  21. 21.
    21. R. J. Pugh, T. Matsunaga, and F. M. Fowkes. The dispersability and stability of carbon black in media of low dielectric constant. I: Electrostatic and steric contributions to colloidal stability. Colloids Surf. 7:183–207 (1983).Google Scholar
  22. 22.
    22. A. Kitahara. Zeta potential in non-aqueous media and its effect on dispersion stability. Prog. Organic Coatings 2:81–98 (1974).CrossRefGoogle Scholar
  23. 23.
    23. D. A. Wyatt and B. Vincent. Electrical effects in non-aqueous systems. J. Biopharm. Sci. 3:27–31 (1989).Google Scholar
  24. 24.
    24. J. A. Brant and A. E. Childress. Assessing short-range membrane-colloid interactions using surface energetics. J. Membr. Sci. 203:257–273 (2002).Google Scholar
  25. 25.
    25. J. A. Brant and A. E. Childress. Colloidal adhesion to hydrophilic membrane surfaces. J. Membr. Sci. 241:235–248 (2004).Google Scholar
  26. 26.
    26. H. Hertz. On the contact of elastic solids. J. Reine Angew. Math. 92:156–171 (1882).Google Scholar
  27. 27.
    27. K. Johnson, K. L. Kendall, and A. D. Roberts. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324:301–313 (1971).Google Scholar
  28. 28.
    28. B. V. Derjaguin, V. M. Müller, and Y. P. Toporov. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53:314–326 (1975).CrossRefGoogle Scholar
  29. 29.
    29. G. Rhodes. Crystallography—Made Crystal Clear, Academic Press, New York, USA, 1993.Google Scholar
  30. 30.
    30. W. A. Ducker, T. J. Senden, and R. M. Pashley. Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241 (1991).Google Scholar
  31. 31.
    31. P. M. Young, R. Price, M. J. Tobyn, M. Buttrum, and F. Dey. The influence of relative humidity on the cohesion properties of micronised drugs used in inhalation therapy. J. Pharm. Sci. 93:753–761 (2004).PubMedGoogle Scholar
  32. 32.
    32. P. G. A. Rogueda. HPFP, a model propellant for pMDIs. Drug Dev. Ind. Pharm. 29:39–49 (2003).PubMedGoogle Scholar
  33. 33.
    33. H. Mizes, M. Ott, E. Eklund, and D. Hays. Small particle adhesion: measurement and control. Colloids and Surfaces A 165:11–23 (2000).Google Scholar
  34. 34.
    34. R. Price, P. M. Young, S. Edge, and J. N. Staniforth. The influence of relative humidity on particulate interactions in carrier-based dry powder inhaler formulations. Int. J. Pharm. 246:47–59 (2002).PubMedGoogle Scholar
  35. 35.
    35. P. Begat, D. A. V. Morton, J. N. Staniforth, and R. Price. The cohesive-adhesive balances in dry powder inhaler formulations I: direct quantification by atomic force microscopy. Pharm. Res. 21:1591–1597 (2004).Google Scholar
  36. 36.
    36. C. J. Van Oss, R. J. Good, and M. K. Chaudhury. Additive and non-additive surface tension components and the interpretation of contact angles. Langmuir 4:884–891 (1988).Google Scholar
  37. 37.
    37. R. J. Good and R. R. Stromberg. Surface and Colloid Science, Plenum Press, New York, 1979.Google Scholar
  38. 38.
    38. G. Buckton. Interfacial Phenomena in Drug Delivery and Targeting, Harwood Academic Publishers, Chur, Switzerland, 1995.Google Scholar
  39. 39.
    39. G. Buckton, P. Darcy, and D. McCarthy. The extent of errors associated with contact angles 3. The influence of surface roughness effects on angles measured using a Wilhelmy plate technique for powders. Colloids and Surfaces A 95:27–35 (1995).Google Scholar
  40. 40.
    40. J. Schultz, L. Lavielle, and C. Martin. The role of the interface in carbon fibre-epoxy composites. J. Adhes. Sci. Technol. 23:45–60 (1987).Google Scholar
  41. 41.
    41. V. Gutmann. The Donor-Acceptor Approach to Molecular Interactions, Plenum Publishing Corporation, New York, 1978.Google Scholar
  42. 42.
    42. F. L. Riddle and F. M. Fowkes. Spectral shifts in acid-base chemistry.1. Van der Waals contributions to acceptor numbers. J. Am. Chem. Soc. 112:3259–3264 (1990).Google Scholar
  43. 43.
    43. N. M. Ahfat, G. Buckton, R. Burrows, and M. D. Ticehurst. Predicting mixing performance using surface energy measurements. Int. J. Pharm. 156:89–95 (1997).Google Scholar
  44. 44.
    44. O. Planinsek, A. Trojak, and S. Srcic. The dispersive component of the surfac fee energy of powders assessed using inverse gas chromatography and contact angle measurements. Int. J. Adhesion Adhesives 221:211–217 (2001).Google Scholar
  45. 45.
    45. J. C. Hooton, C. S. German, S. Allen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams. An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles. Pharm. Res. 21:953–961 (2004).Google Scholar
  46. 46.
    46. J. L. Parker, D. L. Cho, and P. M. Claesson. Plasma modification of mica: forces between fluorocarbon surfaces in water and nonpolar liquid. J. Phys. Chem. 93:6121–6125 (1989).Google Scholar
  47. 47.
    47. H. Yotsumoto and R.-H. Yoon. Application of extended DLVO theory. J. Colloid Interface Sci. 157:426–433 (1993).Google Scholar
  48. 48.
    48. P. M. Claesson and H. K. Christenson. Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water. J. Phys. Chem. 92:1650–1655 (1988).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Daniela Traini
    • 1
  • Philippe Rogueda
    • 2
  • Paul Young
    • 1
  • Robert Price
    • 1
  1. 1.Pharmaceutical Technology Research Group, Department of PharmacyUniversity of BathBathUK
  2. 2.AstraZeneca R&D CharnwoodLoughboroughUK

Personalised recommendations