Pharmaceutical Research

, Volume 22, Issue 5, pp 750–757 | Cite as

Comparative Study of the Skin Penetration of Protein Transduction Domains and a Conjugated Peptide

  • Luciana B. Lopes
  • Colleen M. BrophyEmail author
  • Elizabeth Furnish
  • Charles R. Flynn
  • Olivia Sparks
  • Padmini Komalavilas
  • Lokesh Joshi
  • Alyssa Panitch
  • M. Vitoria L. B. Bentley
Research Paper



We examined the ability of a protein transduction domain (PTD), YARA, to penetrate in the skin and carry a conjugated peptide, P20. The results with YARA were compared to those of a well-known PTD (TAT) and a control, nontransducing peptide (YKAc). The combined action of PTDs and lipid penetration enhancers was also tested.


YARA, TAT, YKAc, P20, YARA-P20, and TAT-P20 were synthesized by Fmoc chemistry. Porcine ear skin mounted in a Franz diffusion cell was used to assess the topical and transdermal delivery of fluorescently tagged peptides in the presence or absence of lipid penetration enhancers (monoolein or oleic acid). The peptide concentrations in the skin (topical delivery) and receptor phase (transdermal delivery) were assessed by spectrofluorimetry. Fluorescence microscopy was used to visualize the peptides in different skin layers.


YARA and TAT, but not YKAc, penetrated abundantly in the skin and permeated modestly across this tissue. Monoolein and oleic acid did not enhance the topical and transdermal delivery of TAT or YARA but increased the topical delivery of YKAc. Importantly, YARA and TAT carried a conjugated peptide, P20, into the skin, but the transdermal delivery was very small. Fluorescence microscopy confirmed that free and conjugated PTDs reached viable layers of the skin.


YARA and TAT penetrate in the porcine ear skin in vitro and carry a conjugated model peptide, P20, with them. Thus, the use of PTDs can be a useful strategy to increase topical delivery of peptides for treatment of cutaneous diseases.

Key Words:

P20 peptides skin topical delivery TAT YARA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. M. R. Prausnitz, S. Mitragotri, and R. Langer. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3:115–124 (2004).CrossRefPubMedGoogle Scholar
  2. 2.
    2. K. C. Madison. Barrier function of the skin: “La Raison d’etre” of the epidermis. J. Invest. Dermatol. 121:231–241 (2003).CrossRefPubMedGoogle Scholar
  3. 3.
    3. B. Barry. Breaching the skin’s barrier to drugs. Nat. Biotechnol. 22:165–167 (2004).CrossRefPubMedGoogle Scholar
  4. 4.
    4. P. Karande, A. Jain, and S. Mitragotri. Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22:192–197 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    5. G. Cevc, A. Schatzlein, and G. Blume. Transdermal drug carriers: basic properties, optimizations and transfer efficiency in the case of epicutaneously applied peptides. J. Control. Rel. 36:3–16 (1995).CrossRefGoogle Scholar
  6. 6.
    6. B. Godin and E. Touitou. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J. Control. Rel. 94:365–379 (2004).CrossRefGoogle Scholar
  7. 7.
    7. O. Pillai, V. Nair, and R. Panchagnula. Transdermal iontophoresis of insulin: IV. Influence of chemical enhancers. Int. J. Pharm. 269:109–120 (2004).CrossRefPubMedGoogle Scholar
  8. 8.
    8. Y. N. Kalia, A. Naik, J. Garrison, and R. H. Guy. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56:619–658 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    9. S. Mitragotri. Synergistic effect of enhancers for transdermal drug delivery. Pharm. Res. 17:1354–1359 (2000).PubMedGoogle Scholar
  10. 10.
    10. H. D. C. Smyth, G. Becket, and S. Mehta. Effect of permeation enhancer pretreatment on the iontophoresis of luteinizing hormone releasing hormone (LHRH) through human epidermal membrane (HEM). J. Pharm. Sci. 9:11296–11307 (2002).Google Scholar
  11. 11.
    11. R. R. Boinpally, S. L. Zhou, G. Devraj, P. K. Anne, S. Poondru, and B. R. Jasti. Iontophoresis of lecithin vesicles of clyclosporin A. Int. J. Pharm. 274:185–190 (2004).PubMedGoogle Scholar
  12. 12.
    12. M. Lindgren, M. Hallbrink, A. Prochiantz, and U. Langel. Cell-penetrating peptides. Trends Pharmacol. Sci. 21:99–103 (2000).PubMedGoogle Scholar
  13. 13.
    13. S. R. Schwarze and S. F. Dowdy. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. 21:45–48 (2000).PubMedGoogle Scholar
  14. 14.
    14. M. Lundberg, S. Wikstrom, and M. Johansson. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8:143–150 (2003).PubMedGoogle Scholar
  15. 15.
    15. E. L. Snyder and S. F. Dowdy. Cell penetrating peptides in drug delivery. Pharm. Res. 21:389–393 (2004).PubMedGoogle Scholar
  16. 16.
    16. J. Zaro and W. C. Shen. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem. Biophys. Res. Commun. 307:241–247 (2003).PubMedGoogle Scholar
  17. 17.
    17. S. R. Schwarze, A. Ho, A. Vocero Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).PubMedGoogle Scholar
  18. 18.
    18. C. R. Flynn, P. Komalavilas, D. Trssier, J. Thresher, E. E. Niederkofler, C. M. Dreiza, R. W. Nelson, A. Panitch, L. Joshi, and C. M. Brophy. Transduction of biologically active motifs of the small heat shock related protein HSP20 leads to relaxation of vascular smooth muscle. FASEB J. 17:1358–1360 (2003).PubMedGoogle Scholar
  19. 19.
    19. V. P. Torchilin and T. S. Levchenko. TAT-liposomes: a novel intracellular drug carrier. Curr. Prot. Pept. Sci 4:133–140 (2003).Google Scholar
  20. 20.
    20. S. Console, C. Marty, C. García-Escheverría, R. Schwendener, and K. Ballmer-Hefer. Antennapedia and HIV transactivator (TAT) “protein transaction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278:35109–35114 (2003).PubMedGoogle Scholar
  21. 21.
    21. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz. Cell internalization of the third helix of Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271:18188–18193 (1996).PubMedGoogle Scholar
  22. 22.
    22. E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997).PubMedGoogle Scholar
  23. 23.
    23. J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585–590 (2003).PubMedGoogle Scholar
  24. 24.
    24. P. E. G. Thoren, D. Persson, P. Isakson, M. Goksor, A. Onfelt, and B. Norden. Uptake of analogs of penetratin, TAT (48–60) and oligoarginine in live cells. Biochem. Biophys. Res. Commun. 307:100–107 (2003).PubMedGoogle Scholar
  25. 25.
    25. J. B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider, P. L. Mcgrane, P. A. Wender, and P. A. Khavari. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. 6:1253–1257 (2000).PubMedGoogle Scholar
  26. 26.
    26. J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. H. Lee, Y. C. Yoo, W. G. Cho, S. Y. Choi, and S. H. Kang. Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J. Cosmet. Sci. 54:483–491 (2003).PubMedGoogle Scholar
  27. 27.
    27. M. P. M. Schutze-Redelmeier, S. Kong, M. B. Bally, and J. P. Dutz. Antennapedia transduction sequence promotes anti tumor immunity to epicutaneously administered CTL epitopes. Vaccine 22:1985–1991 (2004).PubMedGoogle Scholar
  28. 28.
    28. A. Ho, S. R. Schwarze, S. J. Mermelstein, G. Waksman, and S. Dowdy. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61:474–477 (2001).PubMedGoogle Scholar
  29. 29.
    29. D. J. Tessier, P. Komalavilas, B. Liu, C. K. Kent, J. S. Thresher, C. M. Dreiza, A. Panitch, L. Joshi, E. Furnish, W. Stone, R. Fowl, and C. M. Brophy. Transduction of peptides analogs of the small heat shock-related protein HSP20 inhibits intimal hyperplasia. J. Vasc. Surg. 40:106–114 (2004).PubMedGoogle Scholar
  30. 30.
    30. D. J. Tessier, P. Komalavilas, E. McLemore, J. Thresher, and C. M. Brophy. Sildenafil-induced vasorelaxation is associated with increases in the phosphorylation of the heat shock-related protein 20 (HSP20). J. Surg. Res. 118:21–25 (2004).PubMedGoogle Scholar
  31. 31.
    31. M. Foldvari and M. E. Baca-Estrada. Z., He, J. Hu, S. Attah-Poku, M. King. Dermal and transdermal delivery of protein pharmaceuticals: lipid-based delivery systems for interferon-α. Biotechnol. Appl. Biochem. 30:129–137 (1999).PubMedGoogle Scholar
  32. 32.
    32. J. D. Bos and M. M. H. M. Meinardi. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9:165–169 (2000).PubMedGoogle Scholar
  33. 33.
    33. K. Moser, K. Kriwet, A. Naik, Y. N. Kalia, and R. H. Guy. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Bipharm 52:103–112 (2001).Google Scholar
  34. 34.
    34. R. F. V. Lopez, M. V. L. B. Bentley, M. B. Delgado-Charro, and R. H. Guy. Iontophoretic delivery of 5- aminolevulinic acid (ALA): effect of pH. Pharm. Res. 18:311–315 (2001).PubMedGoogle Scholar
  35. 35.
    35. R. Alvarez-Román, A. Naik, Y. N. Kalia, H. Fessi, and R. H. Guy. Visualization of skin penetration using confocal laser scanning microscopy. Eur. J. Pharm. Biopharm. 58:301–316 (2004).PubMedGoogle Scholar
  36. 36.
    36. A. C. Williams and B. W. Barry. Penetration enhancers. Adv. Drug Deliv. Rev. 56:603–618 (2004).PubMedGoogle Scholar
  37. 37.
    37. T. Ogiso, M. Ywaki, and T. Paku. Effect of various enhancers on transdermal penetration of indomethacin and urea and relationship between penetration parameters and enhancement factors. J. Pharm. Sci. 84:482–488 (1995).PubMedGoogle Scholar
  38. 38.
    38. M. G. Carr, J. Corish, and O. I. Corrigan. Drug delivery from a liquid crystalline base across Visking and human stratum corneum. Int. J. Pharm. 157:35–42 (1997).Google Scholar
  39. 39.
    39. P. B. Robbins, S. F. Oliver, S. M. Sheu, P. Goodnough, P. Wender, and P. A. Khavari. Peptide delivery to tissues via reversibly linked protein transduction sequences. Biotechiques 33:190–194 (2002).Google Scholar
  40. 40.
    40. J. Park, J. Ryu, L. H. Jin, J. H. Bahn, J. A. Kim, C. S. Yoon, D. W. Kim, K. H. Han, W. S. Eum, H. Y. Kwon, T. C. Kang, M. H. Won, J. H. Kang, S. W. Cho, and S. Y. Choi. 9-Polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol. Cells 13:202–208 (2002).PubMedGoogle Scholar
  41. 41.
    41. V. H. L. Lee. Enzymatic barriers to peptide and protein absorption. Crit. Rev. Ther. Drug Carrier Syst. 5:69–97 (1988).PubMedGoogle Scholar
  42. 42.
    42. N. G. Turner, L. Ferry, M. Price, C. Cullander, and R. H. Guy. Iontophoresis of L-poly-lysines: the role of molecular weight? Pharm. Res. 14:1322–1331 (1997).PubMedGoogle Scholar
  43. 43.
    43. L. J. Weimann. J. Wu. Transdermal delivery of L-poly-lysine by sonomacroporation. Ultasound Med. Biol 28:1173–1180 (2002).Google Scholar
  44. 44.
    44. J. Y. Fang, W. R. Lee, S. C. Shen, H. Y. Wang, C. L. Fang, and C. H. Hu. Transdermal delivery of macromolecules by erbium: YAG laser. J. Control. Rel. 100:75–85 (2004).Google Scholar
  45. 45.
    45. P. J. White, R. D. Fogarty, I. J. Liepe, P. M. Delaney, G. A. Werther, and C. J. Wraight. Live confocal microscopy of oligonucleotide uptake by keratinocytes in human skin grafts on nude mice. J. Invest. Dermatol. 112:887–892 (1999).PubMedGoogle Scholar
  46. 46.
    46. T. F. Zioncheck, S. A. Chen, L. Richardson, M. Mora-Worms, C. Lucas, D. Lewis, J. D. Green, and J. Mordenti. Pharmacokinetics and tissue distribution of recombinant human transforming growth factor beta 1 after topical and intravenous administration in male rats. Pharm. Res. 11:213–220 (1994).PubMedGoogle Scholar
  47. 47.
    47. S. Frank, B. Stallmeyer, H. Kampfer, and N. Kolbe. J. Pfeilschifter. Leptin enhanes wound re-epithelization and constitutes a direct function of leptin in skin repair. J. Clin. Invest. 106:501–509 (2000).PubMedGoogle Scholar
  48. 48.
    48. K. Lintner and O. Peschard. Biologically active peptides: from a laboratory bench curiosity to function skin care product. Int. J. Cosmet. Sci. 22:207–218 (2000).Google Scholar
  49. 49.
    49. C.D. Partidos, A.S. Beignon, F. Mawas, G. Belliard, J.P. Briand, and S. Muller. Immunity under the skin: potential application for topical delivery of vaccines. Vaccine 21:776–780 (2003).PubMedGoogle Scholar
  50. 50.
    50. H. Schaefer and T. E. Redelmeier. Skin Barrier. Principles of Percutaneous Absorption. Kaerger, Basel, 1996.Google Scholar
  51. 51.
    51. P. E. Thoren, D. Persson, E. K. Esbjorner, M. Goksor, P. Lincoln, and B. Norden. Membrane binding and translocation of cell penetrating peptides. Biochemistry 43:3471–3489 (2004).PubMedGoogle Scholar
  52. 52.
    52. K. Ohtake, T. Maeno, H. Ueda, H. Natsume, and Y. Morimoto. Poly-L-arginine predominantly increases the paracelullar permeability of hydrophilic macromolecules across rabbit nasal epithelium in vitro. Pharm. Res. 20:153–160 (2003).PubMedGoogle Scholar
  53. 53.
    53. K. Ohtake, T. Maeno, H. Ueda, M. Ogihara, A. Natsume, and Y. Morimoto. Poly-L-arginine enhances paracellular permeability via serine/threonine phosphorylation of ZO-1 and tyrosine dephosphorilation of occludin in rabbit nasal epithelium. Pharm. Res. 20:1838–1845 (2003).PubMedGoogle Scholar
  54. 54.
    54. K. Morita and Y. Myachi. Tight junctions in the skin. J. Dermatol. Sci. 31:81–89 (2003).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Luciana B. Lopes
    • 1
    • 3
  • Colleen M. Brophy
    • 1
    • 2
    Email author
  • Elizabeth Furnish
    • 1
  • Charles R. Flynn
    • 1
  • Olivia Sparks
    • 1
  • Padmini Komalavilas
    • 1
    • 2
  • Lokesh Joshi
    • 1
  • Alyssa Panitch
    • 1
  • M. Vitoria L. B. Bentley
    • 3
  1. 1.Biodesign InstituteArizona State UniversityTempeUSA
  2. 2.Carl T. Hayden Veterans Affairs Medical Center, PhoenixPhoenixUSA
  3. 3.Pharmacy School of Ribeirâo PretoUniversity of Sâo PauloRibeirâo Preto, SPBrazil

Personalised recommendations