Advertisement

Pharmaceutical Research

, Volume 22, Issue 4, pp 636–646 | Cite as

A Natural Compound (Ginsenoside Re) Isolated from Panax ginseng as a Novel Angiogenic Agent for Tissue Regeneration

  • Ya-Chun Huang
  • Chiung-Tong Chen
  • Sung-Ching Chen
  • Po-Hong Lai
  • Huang-Chien Liang
  • Yen Chang
  • Lin-Chien Yu
  • Hsing-Wen Sung
Research Papers

No Heading

Purpose.

The primary challenge for tissue engineering is to develop a vascular supply that can support the metabolic needs of the engineered tissues in an extracellular matrix. In this study, the feasibility of using a natural compound, ginsenoside Re, isolated from Panax ginseng in stimulating angiogenesis and for tissue regeneration was evaluated.

Methods.

Effects of ginsenoside Re on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were examined in vitro. Additionally, angiogenesis and tissue regeneration in a genipin-fixed porous acellular bovine pericardium (extracellular matrix; ECM) incorporated with ginsenoside Re implanted subcutaneously in a rat model were investigated. Basic fibroblast growth factor (bFGF) was used as a control.

Results.

It was found that HUVEC proliferation, migration in a Transwell plate, and tube formation on Matrigel were all significantly enhanced in the presence of bFGF or ginsenoside Re. Additionally, effects of ginsenoside Re on HUVEC proliferation, migration, and tube formation were dose-dependent and reached a maximal level at a concentration of about 30 μg/ml. The in vivo results obtained at 1 week postoperatively showed that the density of neocapillaries and the tissue hemoglobin content in the ECMs were significantly enhanced by bFGF or ginsenoside Re. These results indicated that angiogenesis in the ECMs was significantly enhanced by loading with bFGF or ginsenoside Re. At 1 month postoperatively, vascularzied neo-connective-tissue fibrils were found to fill the pores in the ECMs loaded with bFGF or ginsenoside Re.

Conclusions.

The aforementioned results indicated that like bFGF, ginsenoside Re-associated induction of angiogenesis enhanced tissue regeneration, supporting the concept of therapeutic angiogenesis in tissue-engineering strategies.

Key words:

acellular tissue angiogenic agent ginsenoside Re tissue regeneration 

Abbreviations

bFGF

basic fibroblast growth factor

ECM

extracellular matrix

ECM/bFGF

the ECM loaded with bFGF

ECM/control

the ECM dip-coated in the drug-free gelatin solution

ECM/Re

the ECM loaded with ginsenoside Re

H&E

hematoxylin and eosin

HUVEC

human umbilical vein endothelial cell

MTS

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NO

nitric oxide

NOS

nitric oxide synthase

PBS

phosphate buffered saline

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. L. G. Griffith and G. Naughton. Tissue engineering: current challenges and expanding opportunities. Science 295:1009–1014 (2002).PubMedGoogle Scholar
  2. 2.
    2. P. Carmeliet and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257 (2000).CrossRefPubMedGoogle Scholar
  3. 3.
    3. C. K. Colton. Implantable biohybrid artificial organs. Cell Transplant 4:415–436 (1995).CrossRefPubMedGoogle Scholar
  4. 4.
    4. M. K. Smith, M. C. Peters, T. P. Richardson, J. C. Garbern, and D. J. Mooney. Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng. 10:63–71 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    5. L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–554 (1999).CrossRefPubMedGoogle Scholar
  6. 6.
    6. K. Y. Lee, C. R. Halberstadt, W. D. Holder, and D. J. Mooney. Breast reconstruction, In: R. P. Lanza, R. Langer, and J. Vacanti, (eds), Principles of Tissue Engineering. Academic Press, New York, 2000, pp. 409–423Google Scholar
  7. 7.
    7. Y. Tabata. Tissue regeneration based on growth factor release. Tissue Eng. 9:S5–S15 (2003).CrossRefPubMedGoogle Scholar
  8. 8.
    8. R. Y. K. Chan, W. F. Chen, A. Dong, D. Guo, and M. S. Wong. Estrogen-like activity of ginsenoside-Rg1 derived from panax notoginseng. J. Clin. Endocrinol. Metab. 87:3691–3695 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    9. A. S. Attele, J. A. Wu, and C. S. Yuan. Ginseng pharmacology multiple constituents and multiple actions. Biochem. Pharmacol. 58:1685–1693 (1999).CrossRefPubMedGoogle Scholar
  10. 10.
    10. N. Morisaki, S. Watanabe, M. Tezuka, M. Zenibayashi, R. Shiina, N. Koyama, T. Kanzaki, and Y. Saito. Mechanism of angiogenic effects of saponin from Ginseng Radix rubra in human umbilical vein endothelial cells. Br. J. Pharmacol. 115:1188–1193 (1995).PubMedGoogle Scholar
  11. 11.
    11. G. I. Scott, P. B. Colligan, B. H. Ren, and J. Ren. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br. J. Pharmacol. 134:1159–1165 (2001).PubMedGoogle Scholar
  12. 12.
    12. Z. Q. Jin and C. M. Liu. Effect of ginsenoside Re on the electrophysiological activity of the heart. Planta Med. 60:192–193 (1994).PubMedGoogle Scholar
  13. 13.
    13. Z. Q. Jin. The action of ginsenoside Re on inotropy and chronotropy of isolated atria prepared from guinea pigs. Planta Med. 62:314–316 (1996).PubMedGoogle Scholar
  14. 14.
    14. S. Babaei and D. J. Stewart. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovas. Res. 55:190–200 (2002).Google Scholar
  15. 15.
    15. Y. Chang, C. C. Tsai, H. C. Liang, and H. W. Sung. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 23:2447–2457 (2002).PubMedGoogle Scholar
  16. 16.
    16. K. A. Hotchkiss, A. W. Ashton, R. Mahmood, R. G. Russell, J. A. Sparano, and E. L. Schwartz. Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol. Cancer Ther. 1:1191–1200 (2002).PubMedGoogle Scholar
  17. 17.
    17. Y. Terai, M. Abe, K. Miyamoto, M. Koike, M. Yamasaki, M. Ueda, M. Ueki, and Y. Sato. Vascular smooth muscle cell growth-promoting factor/F-Spondin inhibits angiogenesis via the blockade of integrin αvβ3 on vascular endothelial cells. J. Cell. Physiol. 188:394–402 (2001).PubMedGoogle Scholar
  18. 18.
    18. H. Sakamoto, T. Mashima, A. Kizaki, S. Dan, Y. Hashimoto, M. Naito, and T. Tsuruo. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 95:3214–3218 (2000).PubMedGoogle Scholar
  19. 19.
    19. F. Facchiano, A. Lentini, V. Fogliano, S. Mancarella, C. Rossi, A. Facchiano, and M. C. Capogrossi. Sugar-induced modification of fibroblast growth factor 2 reduces its angiogenic activity in vivo. Am. J. Pathol. 161:531–541 (2002).PubMedGoogle Scholar
  20. 20.
    20. D. E. Morales, K. A. McGowan, D. S. Grant, S. Maheshwari, D. Bhartiya, M. C. Cid, H. K. Kleinman, and H. W. Schnaper. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 91:755–763 (1995).PubMedGoogle Scholar
  21. 21.
    21. O. H. Lee, Y. M. Kim, Y. M. Lee, E. J. Moon, D. J. Lee, J. H. Kim, K. W. Kim, and Y. G. Kwon. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 264:743–750 (1999).PubMedGoogle Scholar
  22. 22.
    22. K. M. Malinda, L. Ponce, H. K. Kleinman, L. M. Shackelton, and A. J. T. Millis. Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp. Cell Res. 250:168–173 (1999).PubMedGoogle Scholar
  23. 23.
    23. D. W. Courtman, C. A. Pereira, V. Kashef, and D. MicComb. Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction. J. Biomed. Mater. Res. 28:655–666 (1994).PubMedGoogle Scholar
  24. 24.
    24. Y. Chang, M. H. Lee, H. C. Liang, C. K. Hsu, and H. W. Sung. Acellular bovine pericardia with distinct porous structures fixed with genipin as an extracellular matrix. Tissue Eng. 10:881–892 (2004).PubMedGoogle Scholar
  25. 25.
    25. H. W. Sung, Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47:116–126 (1999).PubMedGoogle Scholar
  26. 26.
    26. I. Martin, V. P. Shastri, R. F. Padera, J. Yang, A. J. Mackay, R. Langer, G. Vunjak-Novakovic, and L. E. Freed. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55:229–235 (2001).PubMedGoogle Scholar
  27. 27.
    27. J. S. Pieper, T. Hafmans, P. B. van Wachem, M. J. A. van Luyn, L. A. Brouwer, J. H. Veerkamp, and T. H. van Kuppevelt. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J. Biomed. Mater. Res. 62:185–194 (2002).PubMedGoogle Scholar
  28. 28.
    28. D. W. Courtman, B. F. Errett, and G. J. Wilson. The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J. Biomed. Mater. Res. 55:576–586 (2001).PubMedGoogle Scholar
  29. 29.
    29. S. J. Bryant and K. S. Anseth. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. 64A:70–79 (2003).Google Scholar
  30. 30.
    30. A. Bader, T. Schiling, and O. E. Teebken. Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Euro. J. Cardio. Thoracic. Sur. 14:279–284 (1998).Google Scholar
  31. 31.
    31. Y. Tabata, M. Miyao, M. Yamamoto, and Y. Ikada. Vascularization into a porous sponge by sustained release of basic fibroblast growth factor. J. Biomater. Sci. Polymer Edn. 10:957–968 (1999).Google Scholar
  32. 32.
    32. F. Esch, A. Baird, N. Ling, N. Ueno, F. Hill, L. Denoroy, R. Klepper, D. Gospodarowicz, P. Bohlen, and R. Guillemin. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 82:6507–6511 (1985).PubMedGoogle Scholar
  33. 33.
    33. D. B. Rifkin and D. Moscatelli. Structural characterization and biological functions of basic fibroblast growth factor. J. Cell Biol. 109:1 (1989).PubMedGoogle Scholar
  34. 34.
    34. D. S. Grant, P. I. Lelkes, K. Fukuda, and H. K. Kleinman. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A:327–336 (1991).PubMedGoogle Scholar
  35. 35.
    35. M. C. Kibbey, L. S. Royce, M. S. Dym, B. J. Baum, and H. K. Kleinman. Glandular morphogenesis of a human submandibular cell line by basement membrane components in vitro. Exp. Cell Res. 198:343–357 (1992).PubMedGoogle Scholar
  36. 36.
    36. K. A. Seely and J. Aggeler. Modulation of milk protein synthesis through alteration of the cytoskeleton in mouse mammary epithelial cells cultured on a reconstituted basement membrane. J. Cell. Physiol. 146:117–130 (1991).PubMedGoogle Scholar
  37. 37.
    37. M. Taub, Y. Wang, T. M. Szcesney, H. K. Kleinman, and G. R. Martin. Transforming growth factor alpha is required for kidney tubulogenesis in Matrigel cultures in serum-free medium. Proc. Natl. Acad. Sci. USA 87:4002–4006 (1990).PubMedGoogle Scholar
  38. 38.
    38. M. Presta, M. Beller, A. Vecchi, J. Hesselgesser, A. Mantovani, and R. Horuk. Noncompetitive, chemokine-mediated inhibition of basic fibroblast growth factor-induced endothelial cell proliferation. J. Biol. Chem. 273:7911–7919 (1998).PubMedGoogle Scholar
  39. 39.
    39. S. Sengupta, S. A. Toh, L. A. Sellers, J. N. Skepper, P. Koolwijk, H. W. Leung, H. W. Yeung, R. N. S. Wong, R. Sasisekharan, and T. P. Fan. Modulating angiogenesis: the yin and the yang in ginseng. Circulation 110:1219–1225 (2004).PubMedGoogle Scholar
  40. 40.
    40. T. Matsuda and Y. Nakayama. Surface microarchitectural design in biomedical applications: In vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser. J. Biomed. Mater. Res. 31:235–242 (1996).PubMedGoogle Scholar
  41. 41.
    41. S. Fujikawa, T. Yokota, K. Koga, and J. Kumada. The continuous hydrolysis of geniposide to genipin using immobilized β-glucosidase on calcium alginate gel. Biotechnol. Lett. 9:697–702 (1987).Google Scholar
  42. 42.
    42. T. H. Tsai, J. Westly, T. F. Lee, and C. F. Chen. Identification and determination of geniposide, genipin, gardenoside, and geniposidic acid from herbs by HPLC/photodiode-array detection. J. Liq. Chromatogr. 17:2199–2205 (1944).Google Scholar
  43. 43.
    43. T. Akao, K. Kobashi, and M. Aburada. Enzymatic studies on the animal and intestinal bacterial metabolism of geniposide. Biol. Pharm. Bull. 17:1573–1576 (1994).PubMedGoogle Scholar
  44. 44.
    44. H. W. Sung, R. N. Huang, L. L. H. Huang, C. C. Tsai, and C. T. Chiu. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J. Biomed. Mater. Res. 42:560–567 (1998).PubMedGoogle Scholar
  45. 45.
    45. H. W. Sung, I. L. Liang, C. N. Chen, R. N. Huang, and H. F. Liang. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J. Biomed. Mater. Res. 55:538–546 (2001).PubMedGoogle Scholar
  46. 46.
    46. A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. 65A:489–497 (2003).Google Scholar
  47. 47.
    47. F. C. Westal, R. Rubin, and D. Gospodarowicz. Brain derived fibroblast growth factor: A study of its inactivation. Life Sci. 33:2425–2429 (1983).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Ya-Chun Huang
    • 1
  • Chiung-Tong Chen
    • 2
  • Sung-Ching Chen
    • 1
  • Po-Hong Lai
    • 1
  • Huang-Chien Liang
    • 1
  • Yen Chang
    • 3
  • Lin-Chien Yu
    • 1
  • Hsing-Wen Sung
    • 1
  1. 1.Department of Chemical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, Republic of China
  2. 2.Division of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesTaipeiTaiwan, Republic of China
  3. 3.Division of Cardiovascular Surgery, Veterans General Hospital-Taichung, and College of MedicineNational Yang-Ming UniversityTaipeiTaiwan, Republic of China

Personalised recommendations