Pharmaceutical Research

, Volume 22, Issue 4, pp 499–511

Method Validation and Measurement of Biomarkers in Nonclinical and Clinical Samples in Drug Development: A Conference Report

  • Jean W. Lee
  • Russ S. Weiner
  • Jeff M. Sailstad
  • Ronald R. Bowsher
  • Dean W. Knuth
  • Peter J. O’Brien
  • Jean L. Fourcroy
  • Rakesh Dixit
  • Lini Pandite
  • Robert G. Pietrusko
  • Holly D. Soares
  • Valerie Quarmby
  • Ole L. Vesterqvist
  • David M. Potter
  • James L. Witliff
  • Herbert A. Fritche
  • Timothy O’Leary
  • Lorah Perlee
  • Sunil Kadam
  • John A. Wagner
Conference Report

No Heading

Biomarkers are increasingly used in drug development to aid scientific and clinical decisions regarding the progress of candidate and marketed therapeutics. Biomarkers can improve the understanding of diseases as well as therapeutic and off-target effects of drugs. Early implementation of biomarker strategies thus promises to reduce costs and time-to-market as drugs proceed through increasingly costly and complex clinical development programs. The 2003 American Association of Pharmaceutical Sciences/Clinical Ligand Assay Society Biomarkers Workshop (Salt Lake City, UT, USA, October 24–25, 2003) addressed key issues in biomarker research, with an emphasis on the validation and implementation of biochemical biomarker assays, covering from preclinical discovery of efficacy and toxicity biomarkers through clinical and postmarketing implementation. This summary report of the workshop focuses on the major issues discussed during presentations and open forums and noted consensus achieved among the participants on topics from nomenclature to best practices. For example, it was agreed that because reliable and accurate data provide the basis for sound decision making, biomarker assays must be validated in a manner that enables the creation of such data. The nature of biomarker measurements often precludes direct application of regulatory guidelines established for clinical diagnostics or drug bioanalysis, and future guidance on biomarker assay validation should therefore be adaptable enough that validation criteria do not stifle creative biomarker solutions.

Key Words:

biomarkers nonclinical and clinical drug development quantitative method development and validation 

Abbreviations

AAPS

American Association of Pharmaceutical Sciences

BQL

below quantifiable limit

CDER

Center for Drug Evaluation and Research

CMS

Centers for Medicare & Medicaid Services

CLAS

Clinical Ligand Assay Society

CLIA

Clinical Lab Improvement Amendments

GLP

good laboratory practices

LBABFG

Ligand Binding Assay Bioanalytical Focus Group

LOD

lower limit of detection

LLOQ

lower limit of quantification

NCCLS

National Committee for Clinical Laboratory Standards

PD

pharmacodynamic

PK

pharmacokinetic

OIVD

Office of in Vitro Diagnostics Device Evaluation and Safety

QCs

quality controls

ULOQ

upper limit of quantification

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. J. A. DiMasi, R. W. Hansen, and H. G. Grabowski. The price of innovation: new estimates of drug development costs. J. Health Econ. 22:151–185 (2003).CrossRefPubMedGoogle Scholar
  2. 2.
    2. G. Levy. Mechanism-based pharmacodynamics modeling. Clin. Pharmacol. Ther. 56:356–358 (1994).PubMedGoogle Scholar
  3. 3.
    3. C. C. Peck, W. H. Barr, L. Z. Benet, J. Collino, R. E. Desjardins, D. E. Furst, J. G. Harter, G. Levy, T. Ludden, and J. H. Rodman. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Pharm. Sci. 81:600–610 (1992).Google Scholar
  4. 4.
    4. W. A. Colburn. Selecting and validating biologic markers for drug development. J. Clin. Pharmacol. 37:355–362 (1997).PubMedGoogle Scholar
  5. 5.
    5. P. R. Jadhav, M. U. Mehta, and J. V. S. Gobburu. How biomarkers can improve clinical drug development. Am. Pharm. Rev. 7:62–64 (2004).Google Scholar
  6. 6.
    6. E. Zerhouni. Medicine. The NIH Roadmap. Science 302:63–72 (2003). Available at http://nihroadmap.nih.gov.CrossRefPubMedGoogle Scholar
  7. 7.
    7. F. D. A. March 2004 report. Innovation or stagnation: challenge and opportunity on the critical path. Available at http://www.fda.gov/oc/initiatives/criticalpath/.Google Scholar
  8. 8.
    8. G. J. Downing. Biomarkers and Surrogate Endpoints: Clinical Research and Applications. Proceedings of the NIH-FDA Conference held on 15–16 April 1999. Elsevier, New York, 2000.Google Scholar
  9. 9.
    9. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69:89–95 (2001).Google Scholar
  10. 10.
    10. R. R. Bowsher. Analytical validation of assays for novel biomarkers. Presentation at AAPS Workshop, Method Validation and Measurement of Biomarkers in Nonclinical and Clinical Samples in Drug Development, Salt Lake City, Utah, 2003.Google Scholar
  11. 11.
    11. J. A. Wagner. Early clinical development of pharmaceuticals for type 2 diabetes mellitus: from pre-clinical models to human investigation. J. Clin. Endocrinol. Metab. 87:5362–5366 (2002).CrossRefPubMedGoogle Scholar
  12. 12.
    12. J. A. Wagner. Overview of biomarkers and surrogate endpoints in drug development. Dis. Markers 18:41–46 (2002).PubMedGoogle Scholar
  13. 13.
    13. J. Berger and J. A. Wagner. Physiological and therapeutic roles of peroxisome proliferator-activated receptors. Diabetes Technol. Ther. 4:163–174 (2002).CrossRefPubMedGoogle Scholar
  14. 14.
    14. U. Krishnamurti and M. W. Steffes. Glycohemoglobin: a primary predictor of the development or reversal of complications of diabetes mellitus. Clin. Chem. 47:1157–1165 (2001).PubMedGoogle Scholar
  15. 15.
    15. D. A. Dillon. Molecular markers in the diagnosis and staging of breast cancer. Semin. Radiat. Oncol. 12:305–318 (2002).CrossRefPubMedGoogle Scholar
  16. 16.
    16. R. Dates, M. Schmitt, and N. Harbeck. Advanced statistical methods for the definition of new staging models. Recent Results Cancer Res. 162:101–113 (2003).PubMedGoogle Scholar
  17. 17.
    17. B. N. Swanson. Delivery of high-quality biomarker assays. Dis. Markers 18:47–56 (2002).PubMedGoogle Scholar
  18. 18.
    18. I. C. H. Guidelines. Text on validation of analytical procedures, Q2A. International Conference on Harmonization, Geneva, Switzerland, 1994.Google Scholar
  19. 19.
    19. V. P. Shah, K. K. Midha, S. Dighe, I. J. McGilveray, J. P. Skelly, A. Yacobi, T. Layloff, C. T. Viswanathan, C. E. Cook, R. D. McDowall, K. A. Pittman, and S. Spector. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. Pharm. Res. 9:588–592 (1992).Google Scholar
  20. 20.
    20. V. P. Shah, K. K. Midha, J. W. A. Findlay, H. M. Hill, J. D. Hulse, I. J. McGilvary, G. McKay, K. J. Miller, R. N. Patnaik, M. L. Powell, A. Tonnelli, C. T. Viswanathan, and A. Yacobi. Bioanalytical method validation. A revisit with a decade of progress. Pharm. Res. 17:1551–1557 (2000).PubMedGoogle Scholar
  21. 21.
    21. Guidance for industry on bioanalytical method validation: availability. Federal Register 66:28526–28527 (2001).Google Scholar
  22. 22.
    22. FDA government document. Code of Federal Regulations. Title 21, Vol. 1. Good Laboratory Practice for Nonclinical Laboratory Studies. Revised April 1, 2001.Google Scholar
  23. 23.
    23. J. W. A. Findlay, W. C. Smith, J. W. Lee, G. D. Nordblom, I. Das, B. S. DeSilva, M. N. Khan, and R. R. Bowsher. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J. Pharm. Biomed. Anal. 21:1249–1273 (2000).PubMedGoogle Scholar
  24. 24.
    24. K. J. Miller, R. R. Bowsher, A. Celniker, J. Gibbons, S. Gupta, J. W. Lee, S. J. Swanson, W. C. Smith, and R. S. Weiner. Workshop on Bioanalytical Methods Validation for Macromolecules: summary report. Pharm. Res. 18:1373–1383 (2001).PubMedGoogle Scholar
  25. 25.
    25. B. DeSilva, W. Smith, R. Weiner, M. Kelley, J. Smolec, B. Lee, M. Khan, D. Tracey, H. Hill, and A. Celniker. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm. Res. 20:1885–1900 (2003).PubMedGoogle Scholar
  26. 26.
    26. W. C. Smith and G. S. Sittampalam. Conceptual and statistical issues in the validation of analytic dilution assays for pharmaceutical applications. J. Biopharm. Stat. 8:509–532 (1998).PubMedGoogle Scholar
  27. 27.
    27. J. W. Lee, W. C. Smith, G. D. Nordblom, and R. R. Bowsher. Validation of Assays for the Bioanalysis of Novel Biomarkers. In J. C. Bloom and R.A. Dean (eds.), Biomarkers in Clinical Drug Development. Marcel Dekker, New York, 2003, pp. 119–149.Google Scholar
  28. 28.
    28. A. R. Mire-Sluis, Y. C. Barrett, V. Devanarayan, E. Koren, H. Liu, M. Maia, T. Parish, G. Scott, G. Shankar, E. Shores, S. J. Swanson, G. Taniguchi, D. Wierda, and L. A. Zuckerman. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunol. Methods 289:1–16 (2004).PubMedGoogle Scholar
  29. 29.
    29. National Committee for Clinical Laboratory Standards (NCCLS). Document EP5-A: Evaluation of Precision Performance of Clinical Chemistry Devices: Approved Guideline (1999); Document EP6-P: Evaluation of the Linearity of Quantitative Analytical Method: Proposed Guideline (1986); Document EP7-P: Interference Testing in Clinical Chemistry: Proposed Guideline (1986); Document EP9-A: Method Comparison and Bias Estimation Using Patient Samples: Approved Guideline (1995).Google Scholar
  30. 30.
    30. FDA government document. Code of Federal Regulations. Title 42, Vol. 3. Clinical Laboratory Improvement Amendment. Revised October 1, 2001.Google Scholar
  31. 31.
    31. J. O. Westgard, P. L. Barry, M. R. Hunt, and T. Grove. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin. Chem. 27:493–501 (1981).PubMedGoogle Scholar
  32. 32.
    32. J. O. Westgard and G. G. Klee. Quality management. In C. Burtis (ed.), Fundamentals of Clinical Chemistry, 4th ed. WB Saunders, Philadelphia, 1996, pp. 211–223.Google Scholar
  33. 33.
    33. P. M. Bossuyt, J. B. Reitsma, D. E. Burns, C. A. Gatsonis, P. P. Glasziou, L. M. Irwig, D. Moher, D. Rennie, H. C. de Vet, and J. G. Lijmer. Standards for Reporting of Diagnostic Accuracy. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin. Chem. 49:7–18 (2003).PubMedGoogle Scholar
  34. 34.
    34. DAKO HercepTest™ Facts, DAKO, Fort Collins, CO, USA, 2000.Google Scholar
  35. 35.
    35. B. Schweitzer, S. Roberts, B. Grimwade, W. Shao, M. Wang, Q. Fu, Q. Shu, I. Laroche, Z. Zhou, V. T. Tchernev, J. Christiansen, M. Velleca, and S. F. Kingsmore. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol. 20:359–365 (2002).PubMedGoogle Scholar
  36. 36.
    36. W. Shao, Z. Zhou, I. Laroche, H. Lu, Q. Zong, D. D. Patel, S. Kingsmor, and S. P. Piccoli. Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J. Biomed. Biotechnol. 5:299–307 (2003).Google Scholar
  37. 37.
    37. S. F. Kingsmore and D. D. Patel. Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Curr. Opin. Biotechnol. 14:74–81 (2003).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Jean W. Lee
    • 1
  • Russ S. Weiner
    • 2
  • Jeff M. Sailstad
    • 3
  • Ronald R. Bowsher
    • 4
  • Dean W. Knuth
    • 5
  • Peter J. O’Brien
    • 6
  • Jean L. Fourcroy
    • 7
  • Rakesh Dixit
    • 8
  • Lini Pandite
    • 9
  • Robert G. Pietrusko
    • 10
  • Holly D. Soares
    • 11
  • Valerie Quarmby
    • 12
  • Ole L. Vesterqvist
    • 2
  • David M. Potter
    • 11
  • James L. Witliff
    • 13
  • Herbert A. Fritche
    • 14
  • Timothy O’Leary
    • 15
  • Lorah Perlee
    • 16
  • Sunil Kadam
    • 6
  • John A. Wagner
    • 8
  1. 1.MDS Pharma ServicesLincolnUSA
  2. 2.Bristol-Myers SquibbPrincetonUSA
  3. 3.Trimeris Inc.DurhamUSA
  4. 4.LINCO Diagnostic ServicesSt. CharlesUSA
  5. 5.Jasper ClinicKalamazooUSA
  6. 6.Eli Lilly and CompanyIndianapolisUSA
  7. 7.Walter Reed Army HospitalBethesdaUSA
  8. 8.Merck and Company, Inc.West PointUSA
  9. 9.GlaxoSmithKlineResearch Triangle ParkUSA
  10. 10.Millenium PharmaceuticalsCambridgeUSA
  11. 11.Pfizer Global ResearchGrotonUSA
  12. 12.Genetech, Inc.South San FranciscoUSA
  13. 13.University of LouisvilleLouisvilleUSA
  14. 14.MD Anderson HospitalUniversity of TexasAustinUSA
  15. 15.Food and Drug AdministrationRockvilleUSA
  16. 16.Molecular Staging Inc.New HavenUSA

Personalised recommendations