Pharmaceutical Research

, Volume 22, Issue 1, pp 11–23 | Cite as

Predicting Drug Disposition via Application of BCS: Transport/Absorption/ Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System

Article

No Heading

The Biopharmaceutics Classification System (BCS) was developed to allow prediction of in vivo pharmacokinetic performance of drug products from measurements of permeability (determined as the extent of oral absorption) and solubility. Here, we suggest that a modified version of such a classification system may be useful in predicting overall drug disposition, including routes of drug elimination and the effects of efflux and absorptive transporters on oral drug absorption; when transporter-enzyme interplay will yield clinically significant effects (e.g., low bioavailability and drug-drug interactions); the direction, mechanism, and importance of food effects; and transporter effects on postabsorption systemic drug concentrations following oral and intravenous dosing. These predictions are supported by a series of studies from our laboratory during the past few years investigating the effect of transporter inhibition and induction on drug metabolism. We conclude by suggesting that a Biopharmaceutics Drug Disposition Classification System (BDDCS) using elimination criteria may expand the number of Class 1 drugs eligible for a waiver of in vivo bioequivalence studies and provide predictability of drug disposition profiles for Classes 2, 3, and 4 compounds.

Key words:

BCS BDDCS disposition drug interactions food effects routes of elimination transporter-enzyme interplay 

References

  1. 1.
    1. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bio-availability. Pharm. Res. 12:413–420 (1995).Google Scholar
  2. 2.
    2. Food and Drug Administration. Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. Food and Drug Administration, Rockville, MD, 2000. Available at http://www.fda.gov/cder/guidance/index.htmGoogle Scholar
  3. 3.
    3. H. Lennernas. Human jejunal effective permeability and its correlation with preclinical drug absorption models. J. Pharm. Pharmacol. 49:627–638 (1997).Google Scholar
  4. 4.
    4. H. van de Waterbeemd. The fundamental variables of the bio-pharmaceutics classification system (BCS): a commentary. Eur. J. Pharm. Sci. 7:1–3 (1998).Google Scholar
  5. 5.
    5. H. H. Blume and B. S. Schug. The biopharmaceutics classification system (BCS): class III drugs—better candidates for BA/BE waiver? Eur. J. Pharm. Sci. 9:117–121 (1999).Google Scholar
  6. 6.
    6. D. Fleisher, C. Li, Y. Zhou, L. H. Pao, and A. Karim. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin. Pharmacokinet. 36:233–254 (1999).Google Scholar
  7. 7.
    7. R. Lobenberg and G. L. Amidon. Modern bioavailability, bio-equivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 50:3–12 (2000).Google Scholar
  8. 8.
    8. A. Avdeef. Physicochemical profiling (solubility, permeability and charge state). Curr. Top. Med. Chem. 1:277–351 (2001).Google Scholar
  9. 9.
    9. B. D. Rege, L. X. Yu, A. S. Hussain, and J. E. Polli. Effect of common excipients on Caco-2 transport of low-permeability drugs. J. Pharm. Sci. 90:1776–1786 (2001).Google Scholar
  10. 10.
    10. C. Tannergren, P. Langguth, and K. J. Hoffmann. Compound mixtures in Caco-2 cell permeability screens as a means to increase screening capacity. Pharmazie 56:337–342 (2001).Google Scholar
  11. 11.
    11. I. Kanfer. Report on the International Workshop on the Biopharmaceutics Classification System (BCS): scientific and regulatory aspects in practice. J. Pharm. Pharm. Sci. 5:1–4 (2002).Google Scholar
  12. 12.
    12. H. Lennernas, L. Knutson, T. Knutson, A. Hussain, L. Lesko, T. Salmonson, and G. L. Amidon. The effect of amiloride on the in vivo effective permeability of amoxicillin in human jejunum: experience from a regional perfusion technique. Eur. J. Pharm. Sci. 15:271–277 (2002). Google Scholar
  13. 13.
    13. M. N. Martinez and G. L. Amidon. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J. Clin. Pharmacol. 42:620–643 (2002).Google Scholar
  14. 14.
    14. M. E. Taub, L. Kristensen, and S. Frokjaer. Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes I–IV. Eur. J. Pharm. Sci. 15:331–340 (2002). Google Scholar
  15. 15.
    15. L. X. Yu, G. L. Amidon, J. E. Polli, H. Zhao, M. U. Mehta, D. P. Conner, V. P. Shah, L. J. Lesko, M. L. Chen, V. H. Lee, and A. S. Hussain. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. 19:921–925 (2002).Google Scholar
  16. 16.
    16. C. A. Bergstrom, M. Strafford, L. Lazorova, A. Avdeef, K. Luthman, and P. Artursson. Absorption classification of oral drugs based on molecular surface properties. J. Med. Chem. 46:558–570 (2003).Google Scholar
  17. 17.
    17. C. Tannergren, T. Knutson, L. Knutson, and H. Lennernas. The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique. Br. J. Clin. Pharmacol. 55:182–190 (2003). Google Scholar
  18. 18.
    18. M. Lindenberg, S. Kopp, and J. B. Dressman. Classification of orally administered drugs on the World Health Organization Model of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 58:265–278 (2004).Google Scholar
  19. 19.
    19. D. A. Smith. Design of drugs through a consideration of drug metabolism and pharmacokinetics. Eur. J. Drug Metab. Pharmacokinet. 3:193–199 (1994).Google Scholar
  20. 20.
    20. L. Z. Benet, S. Øie, and J. B. Schwarz. Design and optimization of dosage regimens: pharmacokinetic data. In: J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon, and A. G. Gilman (eds.), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th edition, McGraw Hill, New York, 1996, pp. 1707–1792.Google Scholar
  21. 21.
    21. K. E. Thummel and D. D. Shen. Design and optimization of dosage regimens: pharmacokinetic data. In: J. G. Hardman and L. E. Limbird (eds.), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th edition, McGraw Hill, New York, 2001, pp. 1924–2023.Google Scholar
  22. 22.
    22. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46:3–26 (2001).Google Scholar
  23. 23.
    23. C. A. Lipinski. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44:235–249 (2000).Google Scholar
  24. 24.
    24. C. A. Lipinski. Chris Lipinski discusses life and chemistry after the Rule of Five. Drug Discov. Today 8:12–16 (2003).Google Scholar
  25. 25.
    25. N. A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A. S. Hussain, H. E. Junginger, S. A. Stavchansky, K. K. Midha, V. P. Shah, and G. L. Amidon. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharmaceut. 1:85–96 (2004).Google Scholar
  26. 26.
    26. M. Yazdanian, K. Briggs, C. Jankovsky, and A. Hawi. The “high solubility” definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm. Res. 21:293–299 (2004).Google Scholar
  27. 27.
    27. C. L. Cummins, L. M. Mangravite, and L. Z. Benet. Characterizing the expression of CYP3A4 and efflux transporters (P-gp, MRP1, and MRP2) in CYP3A4-transfected Caco-2 cells after induction with sodium butyrate and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Pharm. Res. 18:1102–1109 (2001).Google Scholar
  28. 28.
    28. C. L. Cummins, W. Jacobsen, and L. Z. Benet. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300:1036–1045 (2002).Google Scholar
  29. 29.
    29. C. L. Cummins, W. Jacobsen, U. Christians, and L. Z. Benet. CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and mid-azolam. J. Pharmacol. Exp. Ther. 308:143–155 (2004).Google Scholar
  30. 30.
    30. S. Tolle-Sander, J. Rautio, S. Wring, J. W. Polli, and J. E. Polli. Midazolam exhibits characteristics of a highly permeable P-glyco-protein substrate. Pharm. Res. 20:757–764 (2003).Google Scholar
  31. 31.
    31. N. Watanabe and L. Z. Benet. The effect of the interplay between CYP3A4 and P-gp on the metabolism of saquinavir and nifedipine in CYP3A4-transfected Caco-2 cells. Pharmaceutical Sciences World Congress, Kyoto, Japan, June, 2004, Abstract P2E-II-026.Google Scholar
  32. 32.
    32. C. L. Cummins, L. Salphati, M. J. Reid, and L. Z. Benet. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J. Pharmacol. Exp. Ther. 305:306–314 (2003).Google Scholar
  33. 33.
    33. J. H. Chang and L. Z. Benet, Interplay of multiple transporters and glucuronidating enzymes in LLC-PK1 cell lines. AAPS PharmSci. 4: Abstract T3257 (2002).Google Scholar
  34. 34.
    34. Food and Drug Administration. Guidance for Industry: Food-Effect Bioavailability and Fed Bioequivalence Studies. Food and Drug Administration, Rockville, MD, 2002. Available at http://www.fda.gov/cder/guidance/index.htm Google Scholar
  35. 35.
    35. G. K. Dresser, D. G. Bailey, B. F. Leake, U. I. Schwarz, P. A. Dawson, D. J. Freeman, and R. B. Kim. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther. 71:11–20 (2002).Google Scholar
  36. 36.
    36. Y. Y. Lau, C.-Y. Wu, H. Okochi, and L. Z. Benet. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J. Pharmacol. Exp. Ther. 308:1040–1045 (2004).Google Scholar
  37. 37.
    37. J. L. Lam and L. Z. Benet. Hepatic microsome studies are insufficient to characterize in vivo hepatic metabolic clearance and metabolic drug-drug interactions: studies of digoxin metabolism in primary rat hepatocytes vs. microsomes. Drug Metab. Dispos. 32:1311–1316 (2004).Google Scholar
  38. 38.
    38. H. Sun, Y. Huang, L. Frassetto, and L. Z. Benet. Effects of uremic toxins on hepatic uptake and metabolism of erythromycin. Drug Metab. Dispos. 32:1239–1246 (2004).Google Scholar
  39. 39.
    39. Y. Y. Lau, H. Okochi, and L. Z. Benet, Role of hepatic uptake and efflux transporters in the disposition of atorvastatin. AAPS Journal 6: Abstract T2352 (2004).Google Scholar
  40. 40.
    40. D. Sun, L. X. Yu, M. A. Hussain, D. A. Wall, R. L. Smith, and G. L. Amidon. In vitro testing of drug absorption for drug ‘developability’ assessment: forming an interface between in vitro preclinical data and clinical outcome. Curr. Opin. Drug Discov. Devel. 7:75–85 (2004).Google Scholar
  41. 41.
    41. M. Sasaki, H. Suzuki, K. Ito, T. Abe, and Y. Sugiyama. Trans-cellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277:6497–6503 (2002).Google Scholar
  42. 42.
    42. M. Cvetkovic, B. Leake, M. F. Fromm, G. R. Wilkinson, and R. B. Kim. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 27:866–871 (1999).Google Scholar
  43. 43.
    43. C.-Y. Wu and L. Z. Benet. Disposition of tacrolimus in isolated perfused rat liver: influence of troleandomycin, cyclosporine, and GG918. Drug Metab. Dispos. 31:1292–1295 (2003).Google Scholar
  44. 44.
    44. Food and Drug Administration. Guidance for Industry: Drug Metabolism/Drug Interaction Studies in the Drug Development Process: Studies In Vitro. Food and Drug Administration, Rockville, MD, 1997. Available at http://www.fda.gov/cder/guidance/index.htm Google Scholar
  45. 45.
    45. T. D. Bjornsson, J. T. Callaghan, H. J. Einolf, V. Fischer, L. Gan, S. Grimm, J. Kao, S. P. King, G. Miwa, L. Ni, G. Kumar, J. McLeod, S. R. Obach, S. Roberts, A. Roe, A. Shah, F. Snikeris, J. T. Sullivan, D. Tweedie, J. M. Vega, and J. Walsh. and S. A Wrighton, The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. J. Clin. Pharmacol. 43:443–469 (2003).Google Scholar
  46. 46.
    46. S.-M. Huang and L. J. Lesko. Drug-drug, drug-dietary supplement and drug-citrus fruit and other food interactions: what have we learned? J. Clin. Pharmacol. 44:559–569 (2004).Google Scholar
  47. 47.
    47. L. Z. Benet, C. L. Cummins, and C.-Y. Wu. Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr. Drug Metab. 4:393–398 (2003).Google Scholar
  48. 48.
    48. S. K. Gupta, R. C. Manfro, S. J. Tomlanovich, J. G. Gambertoglio, M. R. Garovoy, and L. Z. Benet. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J. Clin. Pharmacol. 30:643–653 (1990).Google Scholar
  49. 49.
    49. S. K. Gupta and L. Z. Benet. High fat meals increase the clearance of cyclosporine. Pharm. Res. 7:46–48 (1990).Google Scholar
  50. 50.
    50. J. E. Polli, L. X. Yu, J. A. Cook, G. L. Amidon, R. T. Borchardt, B. A. Burnside, P. S. Burton, M. L. Chen, D. P. Conner, P. J. Faustino, A. A. Hawi, A. S. Hussain, H. N. Joshi, G. Kwei, V. H. Lee, L. J. Lesko, R. A. Lipper, A. E. Loper, S. G. Nerurkar, J. W. Polli, D. R. Sanvordeker, R. Taneja, R. S. Uppoor, C. S. Vattikonda, I. Wilding, and G. Zhang. Summary workshop report: biopharmaceutics classification system—implementation challenges and extension opportunities. J. Pharm. Sci. 93:1375–1381 (2004).Google Scholar
  51. 51.
    51. World Health Organization, Multisource (Generic) Pharmaceutical Products: Guidelines on Registration Requirements to Establish Interchangeability. WHO Working Document QAS/04.093 Rev. 3 (2004).Google Scholar
  52. 52.
    52. D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45:2615–2623 (2002).Google Scholar
  53. 53.
    53. A. K. Mandagere, T. N. Thompson, and K.-K. Hwang. Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates. J. Med. Chem. 45:304–311 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biopharmaceutical SciencesUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Briston-Myers SquibbPharmaceutical Research InstitutePrincetonUSA

Personalised recommendations