Pharmaceutical Research

, Volume 21, Issue 12, pp 2234–2246 | Cite as

Pharmacokinetics and Biodistribution of Novel Aptamer Compositions

  • Judith M. Healy
  • Scott D. Lewis
  • Markus Kurz
  • Ryan M. Boomer
  • Kristin M. Thompson
  • Charles Wilson
  • Thomas G. McCauley
Article

No Heading

Purpose.

Aptamers are highly selective nucleic acid–based drugs that are currently being developed for numerous therapeutic indications. Here, we determine plasma pharmacokinetics and tissue distribution in rat of several novel aptamer compositions, including fully 2′-O-methylated oligonucleotides and conjugates bearing high-molecular weight polyethylene glycol (PEG) polymers, cell-permeating peptides, and cholesterol.

Methods.

Levels of aptamer conjugates in biological samples were quantified radiometrically and by a hybridization-based dual probe capture assay with enzyme-linked fluorescent readout. Intact aptamer in urine was detected by capillary gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF).

Results.

Aptamer compositions examined exhibited a wide range of mean residence times in circulation (0.6–16 h) and significant variation in distribution levels among organs and tissues. Among the conjugates tested, in vivo properties of aptamers were altered most profoundly by conjugation with PEG groups. Complexation with a 20 kDa PEG polymer proved nearly as effective as a 40 kDa PEG polymer in preventing renal clearance of aptamers. Conjugation with 20 kDa PEG prolonged aptamer circulatory half-life, while reducing both the extent of aptamer distribution to the kidneys and the rate of urinary elimination. In contrast, the fully 2′-O-Me aptamer composition showed rapid clearance from circulation, and elimination with intact aptamer detectable in urine at 48 h post-administration.

Conclusions.

We find that conjugation and chemical composition can alter fundamental aspects of aptamer residence in circulation and distribution to tissues. Though the primary effect of PEGylation was on aptamer clearance, the prolonged systemic exposure afforded by presence of the 20 kDa moiety appeared to facilitate distribution of aptamer to tissues, particularly those of highly perfused organs.

Key words:

naptamer biodistribution conjugation pharmacokinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Ellington and J. W. Szostak. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–22 (1990).CrossRefPubMedGoogle Scholar
  2. 2.
    C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510 (1990).PubMedGoogle Scholar
  3. 3.
    R. D. Jenison, S. D. Jennings, D. W. Walker, R. F. Bargatze, and D. Parma. Oligonucleotide inhibitors of P-selectin-dependent neutrophil-platelet adhesion. Antisense Nucleic Acid Drug Dev 8: 265–79 (1998).Google Scholar
  4. 4.
    L. C. Griffin, J. J. Toole, and L. L. Leung. The discovery and characterization of a novel nucleotide-based thrombin inhibitor. Gene 137: 25–31 (1993).Google Scholar
  5. 5.
    S. R. Watson, Y. F. Chang, D. O’Connell, L. Weigand, S. Ringquist, and D. H. Parma. Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev 10: 63–75 (2000).Google Scholar
  6. 6.
    M. Khati, M. Schuman, J. Ibrahim, Q. Sattentau, S. Gordon, and W. James. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J Virol 77: 12692–8 (2003).Google Scholar
  7. 7.
    C. H. Chen, G. A. Chernis, V. Q. Hoang, and R. Landgraf. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci U S A 100: 9226–31 (2003).Google Scholar
  8. 8.
    N. K. Vaish, R. Larralde, A. W. Fraley, J. W. Szostak, and L. W. McLaughlin. A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. Biochemistry 42: 8842–51 (2003).Google Scholar
  9. 9.
    D. A. Daniels, A. K. Sohal, S. Rees, and R. Grisshammer. Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal Biochem 305: 214–26 (2002).Google Scholar
  10. 10.
    C. Bell, E. Lynam, D. J. Landfair, N. Janjic, and M. E. Wiles. Oligonucleotide NX1838 inhibits VEGF165-mediated cellular responses in vitro. In Vitro Cell Dev Biol Anim 35: 533–42 (1999).Google Scholar
  11. 11.
    B. Wlotzka, S. Leva, B. Eschgfaller, J. Burmeister, F. Kleinjung, C. Kaduk, P. Muhn, H. Hess-Stumpp, and S. Klussmann. In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci U S A 99: 8898–902 (2002).Google Scholar
  12. 12.
    L. Reyderman and S. Stavchansky. Pharmacokinetics and biodistribution of a nucleotide-based thrombin inhibitor in rats. Pharmaceutical Research 15: 904–10 (1998).Google Scholar
  13. 13.
    C. E. Tucker, L. S. Chen, M. B. Judkins, J. A. Farmer, S. C. Gill, and D. W. Drolet. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. 732: 203–12 (1999).Google Scholar
  14. 14.
    Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22: 143–52 (2002).Google Scholar
  15. 15.
    K. G. Carrasquillo, J. A. Ricker, I. K. Rigas, J. W. Miller, E. S. Gragoudas, and A. P. Adamis. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci 44: 290–9 (2003).Google Scholar
  16. 16.
    L. S. Green, D. Jellinek, C. Bell, L. A. Beebe, B. D. Feistner, S. C. Gill, F. M. Jucker, and N. Janjic. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2: 683–95 (1995).Google Scholar
  17. 17.
    D. Jellinek, L. S. Green, C. Bell, C. K. Lynott, N. Gill, C. Vargeese, G. Kirschenheuter, D. P. McGee, P. Abesinghe, W. A. Pieken, and et al. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34: 11363–72 (1995).Google Scholar
  18. 18.
    J. Ruckman, L. S. Green, J. Beeson, S. Waugh, W. L. Gillette, D. D. Henninger, L. Claesson-Welsh, and N. Janjic. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273: 20556–67 (1998).Google Scholar
  19. 19.
    E. Uhlmann, A. Peyman, A. Ryte, A. Schmidt, and E. Buddecke. Use of minimally modified antisense oligonucleotides for specific inhibition of gene expression. Methods Enzymol 313: 268–84 (2000).Google Scholar
  20. 20.
    P. E. Burmeister, S.D. Lewis, R.F. Silva, J.R. Preiss, L.R. Horwitz, P.S. Pendergrast, T.G. McCauley, J. C. Kurz, D. M. Epstein, C. Wilson, and A. D. Keefe. Direct In Vitro Selection of a 2’-O-Methyl-Stabilized Aptamer Against VEGF. Chem Biol, in press (2004).Google Scholar
  21. 21.
    J. Chelliserrykattil and A. D. Ellington. Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA. Nat Biotechnol 22: 1155–60 (2004).Google Scholar
  22. 22.
    S. Agrawal and R. Zhang. Pharmacokinetics of oligonucleotides. Ciba Found Symp 209: 60–75; discussion 75–8 (1997).Google Scholar
  23. 23.
    S. Akhtarand S. Agrawal. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci 18: 12–8 (1997).Google Scholar
  24. 24.
    S. T. Crooke. Advances in understanding the pharmacological properties of antisense oligonucleotides. Adv Pharmacol 40: 1–49 (1997).Google Scholar
  25. 25.
    J. M. Grindel, T. J. Musick, Z. Jiang, A. Roskey, and S. Agrawal. Pharmacokinetics and metabolism of an oligodeoxynucleotide phosphorothioate (GEM91) in cynomolgus monkeys following intravenous infusion. Antisense Nucleic Acid Drug Dev 8: 43–52 (1998).PubMedGoogle Scholar
  26. 26.
    D. K. Monteith and A. A. Levin. Synthetic oligonucleotides: the development of antisense therapeutics. Toxicol Pathol 27: 8–13 (1999).Google Scholar
  27. 27.
    B. Peng, J. Andrews, I. Nestorov, B. Brennan, P. Nicklin, and M. Rowland. Tissue distribution and physiologically based pharmacokinetics of antisense phosphorothioate oligonucleotide ISIS 1082 in rat. Antisense Nucleic Acid Drug Dev 11: 15–27 (2001).Google Scholar
  28. 28.
    S. K. Srinivasan and P. Iversen. Review of in vivo pharmacokinetics and toxicology of phosphorothioate oligonucleotides. J Clin Lab Anal 9: 129–37 (1995).Google Scholar
  29. 29.
    I. Lebedeva, L. Benimetskaya, C. A. Stein, and M. Vilenchik. Cellular delivery of antisense oligonucleotides. Eur J Pharm Biopharm 50: 101–19 (2000).Google Scholar
  30. 30.
    M. Antopolsky, E. Azhayeva, U. Tengvall, S. Auriola, I. Jaaskelainen, S. Ronkko, P. Honkakoski, A. Urtti, H. Lonnberg, and A. Azhayev. Peptide-oligonucleotide phosphorothioate conjugates with membrane translocation and nuclear localization properties. Bioconjug Chem 10: 598–606 (1999).Google Scholar
  31. 31.
    A. Astriab-Fisher, D. S. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem Pharmacol 60: 83–90 (2000).Google Scholar
  32. 32.
    M. Manoharan. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev 12: 103–28 (2002).Google Scholar
  33. 33.
    E. M. Zubin, E. A. Romanova, E. M. Volkov, V. N. Tashlitsky, G. A. Korshunova, Z. A. Shabarova, and T. S. Oretskaya. Oligonucleotide-peptide conjugates as potential antisense agents. FEBS Lett 456: 59–62 (1999).Google Scholar
  34. 34.
    P. C. de Smidt, T. Le Doan, S. de Falco, and T. J. van Berkel. Association of antisense nucleotides with lipoproteins prolongs the plasma half-life and modifies tissue distribution. Nucleic Acids Res 19: 4695–4700 (1991).Google Scholar
  35. 35.
    E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272: 16010–7 (1997).Google Scholar
  36. 36.
    G. A. Pietersz, W. Li, and V. Apostolopoulos. A 16-mer peptide (RQIKIWFQNRRMKWKK) from antennapedia preferentially targets the Class I pathway. Vaccine 19: 1397–405 (2001).Google Scholar
  37. 37.
    J. B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider, P. L. McGrane, P. A. Wender, and P. A. Khavari. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6: 1253–7 (2000).Google Scholar
  38. 38.
    J. B. Rothbard, E. Kreider, C. L. VanDeusen, L. Wright, B. L. Wylie, and P. A. Wender. Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem 45: 3612–8 (2002).Google Scholar
  39. 39.
    N. Pagratis, M. Lochrie, and L. Gold. High affinity TGFb nucleic acid ligands and inhibitors, Gilead Sciences, Inc., USA, 2002.Google Scholar
  40. 40.
    M. J. Graham, S. M. Freier, R. M. Crooke, D. J. Ecker, R. N. Maslova, and E. A. Lesnik. Tritium labeling of antisense oligonucleotides by exchange with tritiated water. Nucleic Acids Res 21: 3737–43 (1993).Google Scholar
  41. 41.
    S. Uemura, J. B. Rothbard, H. Matsushita, P. S. Tsao, C. G. Fathman, and J. P. Cooke. Short polymers of arginine rapidly translocate into vascular cells: effects on nitric oxide synthesis. Circ J 66: 1155–60 (2002).Google Scholar
  42. 42.
    B. Tavitian, S. Terrazzino, B. Kuhnast, S. Marzabal, O. Stettler, F. Dolle, J. R. Deverre, A. Jobert, F. Hinnen, B. Bendriem, C. Crouzel, and L. Di Giamberardino. In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 4: 467–71 (1998).Google Scholar
  43. 43.
    C. M. Smith and J. A. Steitz. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89: 669–72 (1997).Google Scholar
  44. 44.
    F. C. Richardson, R. D. Kuchta, A. Mazurkiewicz, and K. A. Richardson. Polymerization of 2′-fluoro- and 2′-O-methyl-dNTPs by human DNA polymerase alpha, polymerase gamma, and primase. Biochem Pharmacol 59: 1045–52 (2000).Google Scholar
  45. 45.
    F. C. Richardson, C. Zhang, S. R. Lehrman, H. Koc, J. A. Swenberg, K. A. Richardson, and R. A. Bendele. Quantification of 2′-fluoro-2′-deoxyuridine and 2′-fluoro-2′-deoxycytidine in DNA and RNA isolated from rats and woodchucks using LC/MS/MS. Chem Res Toxicol 15: 922–6 (2002).CrossRefPubMedGoogle Scholar
  46. 46.
    R. S. Geary, T. A. Watanabe, L. Truong, S. Freier, E. A. Lesnik, N. B. Sioufi, H. Sasmor, M. Manoharan, and A. A. Levin. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 296: 890–7 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Judith M. Healy
    • 1
  • Scott D. Lewis
    • 1
  • Markus Kurz
    • 1
  • Ryan M. Boomer
    • 1
  • Kristin M. Thompson
    • 1
  • Charles Wilson
    • 1
  • Thomas G. McCauley
    • 1
  1. 1.Archemix Corp.CambridgeUSA

Personalised recommendations