Pharmaceutical Research

, Volume 22, Issue 3, pp 381–389

A New Class of 5-Fluoro-2′-deoxyuridine Prodrugs Conjugated with a Tumor-Homing Cyclic Peptide CNGRC by Ester Linkers: Synthesis, Reactivity, and Tumor-Cell–Selective Cytotoxicity

  • Zhouen Zhang
  • Hiroshi Hatta
  • Kazuhito Tanabe
  • Sei-ichi Nishimot o
Research Papers

No Heading


Tumor-targeting prodrugs of 5-fluoro-2′-deoxyuridine (5-FdUrd), which are chemical conjugations of 5-FdUrd with a tumor-homing cyclic peptide CNGRC by succinate and glutarate linkers, were synthesized to investigate the structural effects of linkers on the hydrolytic release of 5-FdUrd and the tumor-cell–selective cytotoxicity.


A solid phase synthesis method was used to produce 5-FdUrd prodrugs. The kinetics and efficiency of hydrolytic 5-FdUrd release from the prodrugs were investigated in phosphate buffer (PB), fetal bovine serum (FBS), HT-1080 cell lysate, MDA-MB-231 cell lysate, and MEM containing 10% FBS. The tumor-cell–selective cytotoxicity of prodrugs was evaluated by an MTT method.


Two tumor-targeting prodrugs CNF1 and CNF2 bearing 5-FdUrd conjugated with a common cyclic peptide CNGRC by succinate and glutarate linkers, respectively, and their control compounds CN1 and CN2 without 5-FdUrd moiety were synthesized and identified. CNF1 underwent hydrolysis to release 5-FdUrd more rapidly and efficiently than CNF2. Both prodrugs were of lower cytotoxicity compared to 5-FdUrd, showing more selective cytotoxicity toward APN/CD13 positive cells (HT-1080) than toward APN/CD13 negative cells (HT-29, MDA-MB-231).


A new class of tumor-targeting 5-FdUrd prodrugs CNF1 and CNF2 were successfully synthesized. These prodrugs targeted a tumor marker APN/CD13 to cause tumor-cell–selective cyctotoxicity due to 5-FdUrd release, the rate of which could be controlled by the structure of ester linker.

Key Words:

anticancer prodrug cytotoxicity 5-fluoro-2′-deoxyuridine hydrolysis tumor-homing peptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. E. Chu, A. Mota, and M. C. Fogarasi. Pharmacology of cancer chemotherapy. In V. T. DeVita, S. Hellman and S. A. Rosenberg (eds.), Cancer Principles & Practice of Oncology, 6th ed., Vol. 1, Lippincott Williams & Wilkins: Philadelphia, 2001, pp. 388–415.Google Scholar
  2. 2.
    2. C. E. Myers. The pharmacology of the fluoropyrimidines. Pharmacol. Rev. 33:1–15 (1981).Google Scholar
  3. 3.
    3. J. A. van Laar, Y. M. Rustum, S. P. Ackland, C. J. van Groeningen, and G. J. Peters. Comparison of 5-fluoro-2′-deoxyuridine with 5-fluorouracil and their role in the treatment of colorectal cancer. Eur. J. Cancer 34:296–306 (1998).Google Scholar
  4. 4.
    4. S. Fukushima, T. Kawaguchi, M. Nishida, K. Juni, Y. Yamshita, M. Takahashi, and M. Nakano. Selective anticancer effects of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine, a lipophilic prodrug of 5-fluoro-2′-deoxyuridine, dissolved in an oily lymphographic agent on hepatic cancer of rabbits bearing VX-2 tumor. Cancer Res. 47:1930–1934 (1987).Google Scholar
  5. 5.
    5. B. S. Vig, P. J. Lorenzi, S. Mittal, C. P. Landowski, H. Shin, H. Mosberg, J. M. Hilfinger, and G. L. Amidon. Amino acid ester prodrugs of fluorodeoxyuridine: synthesis and effects of structure, stereochemistry, and site of esterification on rate of hydrolysis. Pharm. Res. 20:1381–1388 (2003).Google Scholar
  6. 6.
    6. Z. Xia, L. I. Wiebe, G. G. Miller, and E. E. Knaus. Synthesis and biological evaluation of butanoate, retinoate, and bis(2,2,2-trichloroethyl)phosphate derivatives of 5-fluoro-2′-deoxyuridine and 2′,5-difluoro-2′-deoxyuridine as potential dual action anticancer prodrugs. Arch. Pharm. (Weiheim) 332:286–294 (1999).Google Scholar
  7. 7.
    7. K. Tanabe, Y. Mimasu, A. Eto, Y. Tachi, S. Sakakibara, M. Mori, H. Hatta, and S. Nishimoto. One-electron reduction characteristics of N(3)-substituted 5-fluorodeoxyuridines synthesized as radiation-activated prodrugs. Bioorg. Med. Chem. 11:4551–4556 (2003).Google Scholar
  8. 8.
    8. Y. Shibamoto, Y. Tachi, K. Tanabe, H. Hatta, and S. Nishimoto. In vitro and in vivo evaluation of novel antitumor prodrugs of 5-fluoro-2′-deoxyuridine activated by hypoxic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 58:397–402 (2004).Google Scholar
  9. 9.
    9. Y. Wei, Y. Yan, D. Pei, and B. Gong. A photoactivated prodrug. Bioorg. Med. Chem. Lett. 8:2419–2422 (1998).Google Scholar
  10. 10.
    10. G. A. Koning, J. A. Kamps, and G. L. Scherphof. Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect. Prev. 26:299–307 (2002).Google Scholar
  11. 11.
    11. G. A. Koning, A. Gorter, G. L. Scherphof, and J. A. Kamps. Antiproliferative effect of immunoliposomes containing 5-fluorodeoxyuridine-dipalmitate on colon cancer cells. Br. J. Cancer 80:1718–1725 (1999).Google Scholar
  12. 12.
    12. A. Goerlach, K. G. Krauer, I. F. McKenzie, and G. A. Pietersz. In vitro antitumor activity of 2′-deoxy-5-fluorouridine-monoclonal antibody conjugates. Bioconjug. Chem. 2:96–101 (1991).Google Scholar
  13. 13.
    13. D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmaco. Rev. 51:691–743 (1999).Google Scholar
  14. 14.
    14. S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95:4607–4612 (1998).Google Scholar
  15. 15.
    15. I. Brigger, C. Dubernet, and P. Couvreur. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54:631–651 (2002).Google Scholar
  16. 16.
    16. P. D. Senter and C. J. Springer. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv. Drug Deliv. Rev. 53:247–264 (2001).Google Scholar
  17. 17.
    17. E. C. Ko, X. Wang, and S. Ferrone. Immunotherapy of malignant diseases. Challenges and strategies. Int. Arch. Allergy Immunol. 132:294–309 (2003).Google Scholar
  18. 18.
    18. E. Ruoslahti. Specialization of tumor vasculature. Nat. Rev. Cancer 2:83–90 (2002).Google Scholar
  19. 19.
    19. P. Alessi, C. Ebbinghaus, and D. Neri. Molecular targeting of angiogenesis. Biochim. Biophys. Acta 1654:39–49 (2004).Google Scholar
  20. 20.
    20. E. Ruoslahti and D. Rajotte. An address system in the vasculature of normal tissues and tumors Annu. Rev. Immunol. 18:813–827 (2000).Google Scholar
  21. 21.
    21. R. Pasqualini and E. Ruoslahti. Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366 (1996).CrossRefPubMedGoogle Scholar
  22. 22.
    22. K. Porkka, P. Laakkonen, J. A. Hoffman, M. Bernasconi, and E. Ruoslahti. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc. Natl. Acad. Sci. USA 99:7444–7449 (2002).Google Scholar
  23. 23.
    23. L. A. Landon and S. L. Deutscher. Combinatorial discovery of tumor targeting peptides using phage display. J. Cell. Biochem. 90:509–517 (2003).Google Scholar
  24. 24.
    24. W. Arap, R. Pasqualini, and E. Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380 (1998).CrossRefPubMedGoogle Scholar
  25. 25.
    25. M. Trepel, W. Arap, and R. Pasqualini. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr. Opin. Chem. Biol. 6:399–404 (2002).Google Scholar
  26. 26.
    26. R. Pasqualini, E. Koivunen, R. Kain, J. Lahdenranta, M. Sakamoto, A. Stryhn, R. A. Ashmun, L. H. Shapiro, W. Arap, and E. Ruoslahti. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60:722–727 (2000).Google Scholar
  27. 27.
    27. F. Curnis, G. Arrigoni, A. Sacchi, L. Fischetti, W. Arap, R. Pasqualini, and A. Corti. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 62:867–874 (2002).Google Scholar
  28. 28.
    28. H. Tamamura, A. Omagari, K. Hiramatsu, T. Kanamoto, K. Gotoh, K. Kanbara, N. Yamamoto, H. Nakashima, A. Otaka, and N. Fuji. Synthesis and evaluation of biofunctional anti-HIV agents based on specific CXCR4 antagonist-AZT conjugation. Bioorg. Med. Chem. 9:2179–2187 (2001).Google Scholar
  29. 29.
    29. A. Nagy, A. Polnowski, and A. V. Schally. Stability of cytotoxic luteinizing hormone-releasing hormone conjugate (AN-152) containing doxorubicin 14-O-hemiglutarate in mouse and human serum in vitro: implications for the design of preclinical studies. Proc. Natl. Acad. Sci. USA 97:829–834 (2000).Google Scholar
  30. 30.
    30. H. Tamamura, T. Ishihara, H. Oyake, M. Imai, A. Otaka, T. Ibuka, R. Arakaki, H. Nakashima, T. Murakami, M. Waki, A. Matsumoto, N. Yamamoto, and N. Fujii. Convenient one-pot synthesis of cystine-containing peptides using the trimethylsilyl chloride-dimethyl sulfoxide/trifluoroacetic acid system and its application to the synthesis of bifunctional anti-HIV compounds. J. Chem. Soc., Perkin Trans. 1 1:495–500 (1998).Google Scholar
  31. 31.
    31. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63 (1983).CrossRefGoogle Scholar
  32. 32.
    32. Y. Shibamoto, Y. Mimasu, Y. Tachi, H. Hatta, and S. Nishimoto. Comparison of 5-fluorouracil and 5-fluoro-2′-deoxyuridine as an effector in radiation-activated prodrugs. J. Chemother. 14:390–396 (2002).Google Scholar
  33. 33.
    33. Y. van Hensbergen, H. J. Broxterman, Y. W. Elderkamp, J. Lankelma, J. C. Beers, M. Heijn, E. Boven, K. Hoekman, and H. M. Pinedo. A doxorubicin-CNGRC-peptide conjugate with prodrug properties. Biochem. Pharmacol. 63:897–908 (2002).Google Scholar
  34. 34.
    34. J. S. Shim, J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, H. J. Park, B. S. Shim, S. H. Choi, and H. J. Kwon. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem. Biol. 10:695–704 (2003).Google Scholar
  35. 35.
    35. D. Riemann, A. Kehlen, K. Thiele, M. Löhn, and J. Langner. Induction of aminopeptidase N/CD13 on human lymphocytes after adhesion to fibroblast-like synoviocytes, endothelial cells, epithelial cells, and monocytes/macrophages. J. Immunol. 158:3425–3432 (1997).Google Scholar
  36. 36.
    36. F. Curnis, A. Sacchi, L. Borgna, F. Magni, A. Gasparri, and A. Corti. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol. 18:1185–1190 (2000).Google Scholar
  37. 37.
    37. W. Arap, M. G. Kolonin, M. Trepel, J. Lahdenranta, M. Cardo-Vila, R. J. Giordano, P. J. Mintz, P. U. Ardelt, V. J. Yao, C. I. Vidal, L. Chen, A. Flamm, H. Valtanen, L. M. Weavind, M. E. Hicks, R. E. Pollock, G. H. Botz, C. D. Bucana, E. Koivunen, D. Cahill, P. Troncoso, K. A. Baggerly, R. D. Pentz, K. A. Do, C. J. Logothetis, and R. Pasqualini. Steps toward mapping the human vasculature by phage display. Nat. Med. 8:121–127 (2002).Google Scholar
  38. 38.
    38. F. Pastorino, C. Brignole, D. Marimpietri, M. Cilli, C. Gambini, D. Ribatti, R. Longhi, T. M. Allen, A. Corti, and M. Ponzoni. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res. 63:7400–7409 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Zhouen Zhang
    • 1
  • Hiroshi Hatta
    • 1
  • Kazuhito Tanabe
    • 1
  • Sei-ichi Nishimot o
    • 1
  1. 1.Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto UniversityKatsura CampusKyotoJapan

Personalised recommendations