Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 10, pp 964–970 | Cite as

Determination of the Antioxidant Capacity of Tragopogon Pratensis Species and Testing Their Pancreatic and Hepatic Regenerative Activity

  • Luciana Teodora Rotaru
  • Renata Maria VăruţEmail author
  • Emilia Amzoiu
  • Mihaela Mormoe
  • Nicolaescu Oana
  • Manuel Ovidiu Amzoiu
  • Lucreţia Udrescu
Article

This experimental study was aimed at assessing the total polyphenol and flavonoid content of Tragopogon pratensis (folium) vegetal extract and evaluating the histopathological status of mice with liver problems and diabetes during therapy with 20% hydroalcoholic extract of T. pratensis (folium). The diabetes in mice was induced by single intraperitoneal (i.p.) dose of 180 mg/kg b.w. streptozotocin. The experiment involved two congtrol groups: the first (I) group consisted of mice with normal pancreatic function; the second (II) group consisted of mice with experimentally induced diabetes. The third (III) group of mice with experimentally induced diabetes was treated with T. pratensis extract at a dose of 150 mg/kg b.w.. The first and second groups were not treated, while the third group received daily the established medication once a day, in the morning at the same time (9 a.m), for five weeks. The obtained results showed that the administration of T. pratensis tincture triggers the hepatic regenerative processes, restores functional activity of the liver, and positively influences functionality of the pancreas. The molecular docking analysis supports results of the experimental study.

Keywords

molecular docking streptozotocin diabet Tragopogon pratensis 

References

  1. 1.
    A. C. Maritim, R. A. Sanders, and J. B. Watkins, J. Biochem. Mol. Toxicol., 17(1), 24 – 38 (2003).CrossRefGoogle Scholar
  2. 2.
    R. M. Văruţ, C. E. Gîrd, L. T. Rotaru, et al., Pharm. Chem. J., 51, 1088 (2018).CrossRefGoogle Scholar
  3. 3.
    P. M. Patricia, Curr. Opin. Pharmacol., 9, 771 – 779 (2009).CrossRefGoogle Scholar
  4. 4.
    D. A. Butterfiel, Ann. N. Y. Acad. Sci., 8, 448 – 462 (1998).CrossRefGoogle Scholar
  5. 5.
    H. Esterbauer, R. J. Schaur, and H. Zollner, Free Rad. Biol. Med., 11(1), 81 – 128 (1991).CrossRefGoogle Scholar
  6. 6.
    F. Giacco and M. Brownlee, Circ. Res.,107(9), 1058 – 1070 (2010).CrossRefGoogle Scholar
  7. 7.
    R. M. Văruţ, L. T. Rotaru, and M. C. Văruţ, Rev. Chim., 68(8), 1776 – 1779 (2017).Google Scholar
  8. 8.
    T. Lengauer and M. Rarey, Curr. Opin. Struct. Biol., 6(3), 402 – 406 (1996).CrossRefGoogle Scholar
  9. 9.
    D. Amzoiu, A. M. Stoian, E. Amzoiu, et. Al., Rev. Chim., 66(12), 2013 – 2016 (2015).Google Scholar
  10. 10.
    D. B. Kitchen, H. Decornez, J. R. Furr, et. al., Drug Discovery, 3(11), 935 – 949 (2004).CrossRefGoogle Scholar
  11. 11.
    C. Florescu, L. T. Rotaru, and R. M. Varut., Rev. Chim., 69(4), 837 – 839 (2018).Google Scholar
  12. 12.
    T. Miyase, H. Kohsaka, and A. Ueno, Phytochemistry, 31(6), 2087 – 2091 (1992).CrossRefGoogle Scholar
  13. 13.
    R. Fitter, A. Fitter, and B. Marjorie,Wild Flowers of Britain and Ireland – New Guide to Our Wild Flowers, Bloomsbury Publishing PLC (2003), pp. 294 – 295Google Scholar
  14. 14.
  15. 15.
    V. D. Mitic, S. Jovanovic, and M. D. Ilic, Bulg. Chem. Commun., 46(2), 269 – 276 (2014).Google Scholar
  16. 16.
    R. M. Varut and L. T. Rotaru, Rev. Chim., 68(2), 228 – 231 (2017).Google Scholar
  17. 17.
    S. P. Ionescu and E. Savopol, Extract farmaceutice vegetable, Ed. Medicală, Bucureşti (1997), pp. 85 – 87.Google Scholar
  18. 18.
    I. Popovici and D. Lupuleasa, Tehnologie farmaceuticã, Ed. Polirom, Iaşi (1997), Vol. 1, pp. 359 – 389Google Scholar
  19. 19.
    Farmacopeea Română, Ediþia X-a, Ed. Medicală, Bucureşti (1993), pp. 921 – 922, 983 – 989, 1019 – 1021, 1051–1055.Google Scholar
  20. 20.
    R. M. Varut, Med. Res. Chronicles, 6(1), 45 – 49 (2019).Google Scholar
  21. 21.
    A. Berbecaru-Iovan, Cercetări farmacognostice şi farmacologice asupra unor specii vegetale cu virtuþi hipoglicemiante, Craiova (2009), pp. 119 – 123.Google Scholar
  22. 22.
    M. D. Hanwell, D. E. Curtis, D. C. Lonie, et. al., J. Cheminform., 4, 17 (2012).CrossRefGoogle Scholar
  23. 23.
    Protein Data Bank, http: //www.pdb.org/pdb/home/home.do
  24. 24.
    https: //zhanglab.ccmb.med.umich.edu/ModRefiner/Google Scholar
  25. 25.
    W. L. DeLano, PyMOL, DeLano Scientific, San Carlos, CA (2002), p. 700.Google Scholar
  26. 26.
    S. P. Nair, N. C. Shah, and R. M. Shah., Biomed. Res., 23(3), 402 – 404 (2012).Google Scholar
  27. 27.
    M. Akhlaghi and B. Bandy, J. Mol. Cell. Cardiol., 46, 309 – 317 (2009).CrossRefGoogle Scholar
  28. 28.
    G. Sudha, M. Sangeetha, R. Shree, and S. Svadivukkarasi, Int. J. Curr. Pharm. Res., 2, 137 – 140 (2011).Google Scholar
  29. 29.
    H. F. Waer and S. A. Helmy, J. Nutr. Food Sci., 2, 165 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Luciana Teodora Rotaru
    • 1
  • Renata Maria Văruţ
    • 1
    Email author
  • Emilia Amzoiu
    • 1
  • Mihaela Mormoe
    • 2
  • Nicolaescu Oana
    • 1
  • Manuel Ovidiu Amzoiu
    • 1
  • Lucreţia Udrescu
    • 3
  1. 1.University of Medicine and PharmacyCraiovaRomania
  2. 2.ED, Emergency Hospital CraiovaCraiovaRomania
  3. 3.University of Medicine and Pharmacy Victor BabesTimisoaraRomania

Personalised recommendations