Advertisement

The Role of Phytoengineering in the Preparation and Production of Herbal Medicines

  • N. L. ShimanovskiiEmail author
Article
  • 5 Downloads

The opportunities provided by biotechnology and phytoengineering methods for producing physiologically active substances (secondary metabolites) of plant origin are considered. It is noted that alkaloids, flavonoids, terpenes, steroids, and other compounds of plant origin are of pharmaceutical interest and can be prepared using cellular technologies and plant cell and tissue culture.

Keywords

medicinal herbs secondary plant metabolites phytoengineering 

References

  1. 1.
    M. Y. Hirai, M. Yano, D. B. Goodenowe, et al., Proc. Natl. Acad. Sci. USA, 101, 10205 – 10210 (2004).CrossRefGoogle Scholar
  2. 2.
    H. Gaosheng and J. Jingming, “Production of the useful secondary metabolites through the regulation of biosynthetic pathway in the cell and tissue suspension culture of medicinal plants,” in: Recent Advances in Plant in Vitro Culture, H. Gaosheng and J. Jingming (eds.), INTECH, Rijeka (2012).Google Scholar
  3. 3.
    T. Isah, Br. J. Pharm. Res., 6(4), 214 – 227 (2015).CrossRefGoogle Scholar
  4. 4.
    T. Isah, S. Uma, and A. Mujib, Plant. Cell Tiss. Organ Cult., 132, 239 – 265 (2018).CrossRefGoogle Scholar
  5. 5.
    L. van der Fits and J. Memelink, Science, 289, 295 – 297 (2000).CrossRefGoogle Scholar
  6. 6.
    S. E. O’Connor, Ann. Rev. Genet., 49, 71 – 94 (2015).CrossRefGoogle Scholar
  7. 7.
    G. Farre, D. Blancquaert, T. Capell, et al., Ann. Rev. Plant. Biol., 65, 187 – 223 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Lu, K. Tang, and P. Li, Front. Plant. Sci., 7, 1647 (2016).PubMedPubMedCentralGoogle Scholar
  9. 9.
    K. M. Oksman-Caldentey and R. Arroo, “Regulation of tropane alkaloid metabolism in plants and plant cell cultures”, in: Metabolic Engineering of Plant Secondary Metabolism, R. Verpoorte and A. W. R. Alfermann (eds.), Springer, New York (2000), pp. 253 – 281.CrossRefGoogle Scholar
  10. 10.
    F. Sato, T. Hashimoto, A. Hachiya, et al., Proc. Natl. Acad. Sci. USA, 98(1), 367 – 372 (2001).CrossRefGoogle Scholar
  11. 11.
    S. S. Mahmoud and R. B. Croteau, Proc. Nat. Acad. Sci. USA,98(15), 8915 – 8920 (2001).CrossRefGoogle Scholar
  12. 12.
    R. S. Allen, A. G. Millgate, J. A. Chitty, et al., Nat. Biotechnol., 22(12), 1559 (2004).CrossRefGoogle Scholar
  13. 13.
    G. R. Davuluri, A. van Tuinen, P. D. Fraser, Nat. Biotechnol., 23(7), 890 – 895 (2005).CrossRefGoogle Scholar
  14. 14.
    S. Sharma and N. Shrivastava, Planta, 244(1), 19 – 38 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Nanda, J. N. Mohanty, R. Mishra, and R. K. Joshi, “Metabolic engineering of phenyl propanoids in plants”, in: Transgenesis and Secondary Metabolism: Part of the Series Reference Series In Phytochemistry, S. Jha (ed.), Springer, New York (2016), pp. 1 – 26.Google Scholar
  16. 16.
    S. G. Gandhi, V. Mahajan, and Y. S. Bedi, Planta, 241, No. 2, 303 – 317 (2015).CrossRefGoogle Scholar
  17. 17.
    T. A. Paz, V. dos Santos, M. C. Inacio, et al., Plant Cell Tiss. Organ Cult., 130, 255 – 263 (2017).CrossRefGoogle Scholar
  18. 18.
    S. S. Malik and J. S. Laura, Int. J. Curr. Res.,6(5), 6497 – 6507 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.N. I. Pirogov Russian National Medical Research University, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations