Advertisement

Design and Physicochemical Characterization of Lysozyme Loaded Niosomal Formulations as a New Controlled Delivery System

  • Somayeh Sadeghi
  • Parastoo Ehsani
  • Reza Ahangari Cohan
  • Soroush Sardari
  • Iman Akbarzadeh
  • Haleh BakhshandehEmail author
  • Dariush Norouzian
Article
  • 3 Downloads

Lysozyme loaded niosomes containing various molar ratios of two kinds of surfactants were prepared and the properties of these niosomal formulations were studied. The results revealed that the size of niosomes varied between 240.06 ± 32.41 and 895.2 ± 20.84 nm. Formulations with the lowest size and no precipitation had entrapment efficiencies ranging from 60.644 ± 3.310 to 66.333 ± 1.98%. Their controlled release profiles after 48 h were 15.67, 20.67 and 31.50%. After 2 months, the most stable formulation in terms of size, PDI, zeta potential, and entrapment efficiency was used to study the secondary structures of lysozyme in niosomal and free forms. Lysozyme loaded niosome and lysozyme adsorbed on the surface of niosome fell into one category in terms of the formation of α-helix,β -sheet, and turn structures. This study suggests that niosomes could be a promising delivery system for lysozyme with prolonged release profiles, which can be used in pharmaceutical and food industries.

Keywords

lysozyme secondary structure niosome controlled release 

Notes

Acknowledgements

This project was financially supported by a scholarship of education center of the Pasteur Institute of Iran to SS, PhD student.

Conflict of Interest

Authors declare that they have no conflict of interest.

References

  1. 1.
    J. Manosroi, W. Lohcharoenkal, F. Gotz, et al., J. Pharm. Sci., 100, 1525 (2011).CrossRefGoogle Scholar
  2. 2.
    S. Moghassemi, A. Hadjizadeh, A. Hakamivala, and K. Omidfar, AAPS PharmSciTech, 18, 34 (2017).CrossRefGoogle Scholar
  3. 3.
    V. Akbari, D. Abedi, A. Pardakhty, and H. Sadeghi-Aliabadi, Avicenna J. Med. Biotechnol., 7, 69 (2015).PubMedPubMedCentralGoogle Scholar
  4. 4.
    A. Manosroi, P. Khanrin, R. G. Werner, et al., J. Microencaps., 27, 272 (2010).CrossRefGoogle Scholar
  5. 5.
    A. Pardakhty, J. Varshosaz, and A. Rouholamini, Int. J. Pharm. (Amsterdam, Neth.), 328, 130 (2007).Google Scholar
  6. 6.
    L. Tavano, R. Muzzalupo, L. Mauro, et al., Langmuir, 29, 12638 (2013).CrossRefGoogle Scholar
  7. 7.
    C.-O. Rentel, J. Bouwstra, B. Naisbett, and H. Junginger, Int. J. Pharm. (Amsterdam, Neth.), 186, 161 (1999).Google Scholar
  8. 8.
    S. M. Niemiec, C. Ramachandran, and N. Weiner, Pharm. Res., 12, 1184 (1995).CrossRefGoogle Scholar
  9. 9.
    A. Manosroi, W. Lohcharoenkal, F. Gotz, et al., J. Biomed. Nanotechnol., 7, 366 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Brewer and J. Alexander, Immunology, 75, 570 (1992).PubMedPubMedCentralGoogle Scholar
  11. 11.
    S. Murdan, G. Gregoriadis, and A. T. Florence, Eur. J. Pharm. Sci., 8, 177 (1999).CrossRefGoogle Scholar
  12. 12.
    S.-I. Park and S. M. Yoe, Animal Cells Systems, 16, 455 (2012).CrossRefGoogle Scholar
  13. 13.
    L. Callewaert and C. W. Michiels, J. Biosci., 35, 127 (2010).CrossRefGoogle Scholar
  14. 14.
    O. S. A. Abed, C. Chaw, L. Williams, and A. A. Elkordy, Sci. Rep., 8, 13158 (2018).CrossRefGoogle Scholar
  15. 15.
    H. Yoshida, C.-M. Lehr, W. Kok, et al., J. Control. Release, 21, 145 (1992).CrossRefGoogle Scholar
  16. 16.
    R. Rochdy Haj-Ahmad, A. Ali Elkordy, and C. Shu Chaw, Curr. Drug Deliv., 12, 628 (2015).CrossRefGoogle Scholar
  17. 17.
    The HLB System: a Time-Saving Guide to Emulsifier Selection, ICI Americas Inc. (1984).Google Scholar
  18. 18.
    V. B. Junyaprasert, P. Singhsa, J. Suksiriworapong, and D. Chantasart, Int. J. Pharm. (Amsterdam, Neth.), 423, 303 (2012).Google Scholar
  19. 19.
    N. Bharti, S. Loona, and M. Khan, Int. J. Pharm. Sci. Rev. Res., 12, 67 (2012).Google Scholar
  20. 20.
    S. Taymouri and J. Varshosaz, Adv. Biomed. Res., 5, 48 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Hope, M. Bally, L. Mayer, et al., Chem. Phys. Lipids, 40, 89 (2016).CrossRefGoogle Scholar
  22. 22.
    M. M. El-Sayed, A. K. Hussein, H. A. Sarhan, and H. F. Mansour, Drug Dev. Ind. Pharm., 43, 902 (2017).CrossRefGoogle Scholar
  23. 23.
    N. J. Kruger, The Bradford method for protein quantitation, in: The Protein Protocols Handbook, Springer (2002), p. 15.Google Scholar
  24. 24.
    D. Charnvanich, N. Vardhanabhuti, and P. Kulvanich, AAPS PharmSciTech, 11, 832 (2010).CrossRefGoogle Scholar
  25. 25.
    A. Manosroi, P. Wongtrakul, J. Manosroi, et al., Colloids Surf. B, 30, 129 (2003).CrossRefGoogle Scholar
  26. 26.
    C. Bernsdorff, A. Wolf, R. Winter, and E. Gratton, Biophys. J., 72, 1264 (1997).CrossRefGoogle Scholar
  27. 27.
    P. Balakrishnan, S. Shanmugam,W. S. Lee, et al., Int. J. Pharm. (Amsterdam, Neth.), 377, 1 (2009).Google Scholar
  28. 28.
    C. S. Chaw and K. Y. Ah Kim, Pharmaceutical development and technology 2013, 18, 667.Google Scholar
  29. 29.
    T. Yoshioka, B. Sternberg, and A. T. Florence, Int. J. Pharm. (Amsterdam, Neth.),105, 1 (1994).Google Scholar
  30. 30.
    S. Moghassemi, E. Parnian, A. Hakamivala, et al., Mater. Sci. Eng. C, 46, 333 (2015).CrossRefGoogle Scholar
  31. 31.
    A. Y. Waddad, S. Abbad, F. Yu, et al., Int. J. Pharm. (Amsterdam, Neth.), 456, 446 (2013).Google Scholar
  32. 32.
    S. McLaughlin, G. Szabo, and G. Eisenman, J. Gen. Pphysiol., 58, 667 (1971).CrossRefGoogle Scholar
  33. 33.
    A. Manosroi and K. Bauer, Drug Dev. Ind. Pharm., 15, 2531 (1989).CrossRefGoogle Scholar
  34. 34.
    M. Raslan, J. Life Med., 1, 15 (2013).CrossRefGoogle Scholar
  35. 35.
    M. Mokhtar, O. A. Sammour, M. A. Hammad, and N. A. Megrab, Int. J. Pharm. (Amsterdam, Neth.)., 361, 104 (2008).Google Scholar
  36. 36.
    J. Varshosaz, A. Pardakhty, V.-I. Hajhashemi, and A. R. Najafabadi, Drug Deliv., 10, 251 (2003).CrossRefGoogle Scholar
  37. 37.
    H. S. Barakat, I. A. Darwish, L. K. El-Khordagui, and N. M. Khalafallah, Drug Dev. Ind. Pharm., 35, 631 (2009).CrossRefGoogle Scholar
  38. 38.
    A. L. Weiner, Adv. Drug Deliv. Rev., 3, 307 (1989).CrossRefGoogle Scholar
  39. 39.
    K. Ruckmani and V. Sankar, AAPS PharmSciTech, 11, 1119 (2010).CrossRefGoogle Scholar
  40. 40.
    S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Pol. Pharm., 67, 217 (2010).PubMedGoogle Scholar
  41. 41.
    S. Kamboj, V. Saini, and S. Bala, Sci. World J., 2014, 1 (2014).CrossRefGoogle Scholar
  42. 42.
    I. F. Uchegbu and S. P. Vyas, Int. J. Pharm. (Amsterdam, Neth.)., 172, 33 (1998).Google Scholar
  43. 43.
    A. Balasubramaniam, V. Anil Kumar, and K. Sadasivan Pillai, Drug Dev. Ind. Ppharm., 28, 1181 (2002).CrossRefGoogle Scholar
  44. 44.
    M. Lawrence, S. Chauhan, S. Lawrence, and D. Barlow, STP Pharma Sci., 6, 49 (1996).Google Scholar
  45. 45.
    M. Seras-Cansell, M. Ollivon, and S. Lesieur, STP Pharma Sci., 6, 12 (1996).Google Scholar
  46. 46.
    E. Moazeni, K. Gilani, F. Sotoudegan, A. Pardakhty, et al., J. Microencaps., 27, 618 (2010).CrossRefGoogle Scholar
  47. 47.
    A. Pardakhty, E. Moazeni, J. Varshosaz, et al., DARU J. Pharm. Sci., 19, 404 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Somayeh Sadeghi
    • 1
    • 2
  • Parastoo Ehsani
    • 2
  • Reza Ahangari Cohan
    • 1
  • Soroush Sardari
    • 3
  • Iman Akbarzadeh
    • 1
    • 4
  • Haleh Bakhshandeh
    • 1
    Email author
  • Dariush Norouzian
    • 1
  1. 1.Department of Nano biotechnology, New Technology Research GroupPasteur Institute of IranTehranIran
  2. 2.Department of Molecular BiologyPasteur Institute of IranTehranIran
  3. 3.Department of Medical Biotechnology, Biotechnology Research CentrePasteur Institute of IranTehranIran
  4. 4.Department of Chemical and Petroleum Engineering, Biotechnology Research CentreSharif University of TechnologyTehranIran

Personalised recommendations