Advertisement

9,10-Anthraquinone Dithiocarbamates as Potential Pharmaceutical Substances with Pleiotropic Actions: Computerized Prediction of Biological Activity and Experimental Validation

  • M. V. StasevichEmail author
  • V. I. Zvarich
  • V. P. Novikov
  • S. D. Zagorodnyaya
  • O. Yu. Povnitsa
  • M. A. Chaika
  • M. V. Nesterkina
  • I. A. Kravchenko
  • D. S. Druzhilovskii
  • V. V. Poroikov
Article
  • 26 Downloads

The pleiotropic pharmacological actions of 9,10-anthraquinone dithiocarbamates were studied. The Way2Drug web portal was used to establish that cytotoxic, antiviral, and anticonvulsant actions were predicted for the study molecules, along with moderate toxicity. In vitro experimental studies showed that all study compounds had cytotoxic effects on tumor cell lines Hep-2, CHO, HeLa, Raji, BL, and B95-8. The high levels of cytotoxicity against cell lines Raji and B95-8 seen with derivatives II, IV, VI, and X was evidence of direct actions on Epstein-Barr virus (EBV). Along with the cytotoxic action, dithiocarbamates V, VIII, and IX showed antiviral effects against herpes virus HSV-2. Compounds VI and X, which had cytotoxic and antiviral actions, produced anticonvulsant effects 3 and 6 h after administration, while dithiocarbamate III, which had cytotoxic activity, retained its antiviral effect 24 h after administration. Dithiocarbamates with pleiotropic actions were moderately toxic (LD50 > 1000 mg/ml, mice, p.o.). Interactions between the structures and the three types of biological activity studied experimentally were assessed.

Keywords

9,10-anthraquinone dithiocarbamates computer prediction Way2Drug cytotoxic activity antiviral activity anticonvulsant activity 

References

  1. 1.
    V. T. DeVita, T. S. Lawrence, and S. A. Rosenberg, Cancer: Principles and Practice of Oncology, Wolters Kluwer Lippincott Williams & Wilkins, Philadelphia (2011).Google Scholar
  2. 2.
    P. De Paoli and A. Carbone, Int. J. Cancer, 133(7), 1517 – 1529 (2013).CrossRefGoogle Scholar
  3. 3.
    J. L. Kutok and F. Wang, Annu. Rev Pathol., No. 1, 375 – 404 (2006).Google Scholar
  4. 4.
    J. Jalouli, M. M. Jalouli, D. Sapkota, et al., Anticancer Res., 32(2), 571 – 580 (2012).PubMedGoogle Scholar
  5. 5.
    C. P. Benit and CJ. Vecht, Neuro-Oncology Practice, 3, No. 4, 245 – 260 (2016).Google Scholar
  6. 6.
    H. Brotz-Oesterhelt and N. A. Brunner, Curr. Opin. Pharmacol., 8(5), 564 – 573 (2008).CrossRefGoogle Scholar
  7. 7.
    A. L. Hopkins, G. R. Bickerton, I. M. Carruthers, et al., Cur. Top. Med. Chem., 11(10), 1292 – 1300 (2011).CrossRefGoogle Scholar
  8. 8.
    J. U. Peters, J. Med. Chem., 56(22), 8955 – 8971 (2013).Google Scholar
  9. 9.
    G. Housman, S. Byler, S. Heerboth, et al., Cancers,6, 3, 1769 – 1792 (2014).CrossRefGoogle Scholar
  10. 10.
    H. Zahreddine and K. L. Borden, Front. Pharmacol., 4, 28 (2013).CrossRefGoogle Scholar
  11. 11.
    B. Deslouches and Y. P. Di, Oncotarget, 8(28), 46635 – 46651 (2017).CrossRefGoogle Scholar
  12. 12.
    V. W. C. Soo, B. W. Kwan, H. Quezada, et al. Curr. Top. Med. Chem., 17(10), 1157 – 1176 (2017).CrossRefGoogle Scholar
  13. 13.
    M. Micozzi, Fundamentals of Complementary, Alternative, and Integrative Medicine, Elsevier, Riverport Lane (2018).Google Scholar
  14. 14.
    A. Q. Acton, Anthraquinones — Advances in Research and Application, Scholarly Editions, Atlanta (2013).Google Scholar
  15. 15.
    V. I. Zvarich, M. V. Stasevich, O. V. Stan’ko, et al., Pharm. Chem. J., 48(9), 584 – 588 (2014).CrossRefGoogle Scholar
  16. 16.
    M. Stasevych, V. Zvarych, V. Lunin, et al., Indian J. Pharm. Sci., 77(5), 634 – 637 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Stasevych, V. Zvarych, V. Lunin, et al., Monatsh. Chem., 149(6), 1111 – 1119 (2018).CrossRefGoogle Scholar
  18. 18.
    E. M. Malik and C. E. Muller, Med. Res. Rev., 36(4), 705 – 748 (2016).CrossRefGoogle Scholar
  19. 19.
    L. M. L. Nollet and J. A. Gutierrez-Uribe, Phenolic Compounds in Food. Characterization and Analysis, CRC Press, Boca Raton (2018).Google Scholar
  20. 20.
    A. S. Tikhomirov, A. A. Shtil, and A. E. Shchekotikhin, Recent Pat. Anti-Cancer Drug Discov., 13, 159 – 183 (2018).CrossRefGoogle Scholar
  21. 21.
    Clarivate Analytics Integrity, 2018; http: //integrity.Thomson-Pharma.com (accessed June 23, 2018).
  22. 22.
    V. Zvarych, M. Stasevych, V. Lunin, et al., Monatsh. Chem., 147(12), 2093 – 2101 (2016).CrossRefGoogle Scholar
  23. 23.
    T. I. Halenova, I. V. Nikolaeva, M. V. Stasevych, et al., Res. J. Pharm. Biol. Chem. Sci., 8, 1626 – 1632 (2017).Google Scholar
  24. 24.
    M. Stasevych, V. Zvarych, V. Lunin., et al., SAR QSAR Environ. Res., 28(5), 355 – 366 (2017).CrossRefGoogle Scholar
  25. 25.
    D. S. Druzhilovskiy, A. V. Rudik, D. A. Filimonov, et al., Rus. Chem. Bull.,66(10), 1832 – 1841 (2017).CrossRefGoogle Scholar
  26. 26.
    D. A. Filimonov, D. S. Druzhilovskiy, A. A. Lagunin, et al., Biomed. Chem. Res. Meth., 1, e00004 (2018).CrossRefGoogle Scholar
  27. 27.
    A. A. Lagunin, V. I. Dubovskaja, A. V. Rudik, et al., PLOS One, 13, e0191838 (2018).CrossRefGoogle Scholar
  28. 28.
    A. Lagunin, A. Zakharov, D. Filimonov, et al., Mol. Inf.,30(2 – 3), 241 – 250 (2011).CrossRefGoogle Scholar
  29. 29.
    T. Mosmann, Immunol. J. Meth., 65(1 – 2), 55 – 63 (1983).CrossRefGoogle Scholar
  30. 30.
    M. Ahmed, Pharmacol. Pharmacy, 6, 185 – 189 (2015).CrossRefGoogle Scholar
  31. 31.
    J. Švarc-Gajiæ, General Toxicology, Nova Science Publishers Inc., New York (2010).Google Scholar
  32. 32.
    S. M. Ivanov, A. A. Lagunin D. A. Filimonov, et al., Pharm. Chem. J., 52(8), 758 – 762 (2018).CrossRefGoogle Scholar
  33. 33.
    R. K. P. Tripathi and S. R. Ayyannan, Med. Chem. Res., 27(3), 709 – 725 (2018).CrossRefGoogle Scholar
  34. 34.
    V. V. Knyazev, V. S. Rogovskii, E. D. Sveshnikova, et al., Pharm. Chem. J., 52(3), 205 – 208 (2018).CrossRefGoogle Scholar
  35. 35.
    A. Lagunin, A. Stepanchikova, D. Filimonov, et al., Bioinformatics, 16(8), 747 – 748 (2000).CrossRefGoogle Scholar
  36. 36.
    PASS Online, 2019; http: //www.way2drug.com/PASSOnline/index.php (accessed July 15, 2019).
  37. 37.
    K. Anusevicius, V. Mickevicius, M. Stasevych, et al., Res. Chem. Intermed.,41(10), 7517 – 7540 (2015).CrossRefGoogle Scholar
  38. 38.
    M. V. Nesterkina and I. A. Kravchenko, Chem. Nat. Compd.,52(2), 237 – 239 (2016).CrossRefGoogle Scholar
  39. 39.
    Clarivate Analytics Integrity (2019); https://integrity.clarivate.com/(accessed July 15, 2019).
  40. 40.
    Y. C. Martin, J. L. Kofron, and L. M. Traphagen, J. Med. Chem., 45(19), 4350 – 4358 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • M. V. Stasevich
    • 1
    Email author
  • V. I. Zvarich
    • 1
  • V. P. Novikov
    • 1
  • S. D. Zagorodnyaya
    • 2
  • O. Yu. Povnitsa
    • 2
  • M. A. Chaika
    • 2
  • M. V. Nesterkina
    • 3
  • I. A. Kravchenko
    • 3
  • D. S. Druzhilovskii
    • 4
  • V. V. Poroikov
    • 4
  1. 1.Lvov Polytechnic National UniversityLvovUkraine
  2. 2.D. K. Zabolotnyi Institute of Microbiology and Virology, Ukrainian National Academy of SciencesKievUkraine
  3. 3.Odessa National Polytechnic UniversityOdessaUkraine
  4. 4.V. N. Orekhovich Science Research Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations