Advertisement

Pharmacokinetics and Biodistribution of Anastrozole in a Polymer-Containing Formulation

  • N. V. GukasovaEmail author
  • I. A. Tubasheva
  • S. L. Kuznetsov
  • S. V. Aleshin
  • V. V. Sokolov
  • T. A. Antipova
  • Yu. I. Poltavets
  • A. A. Krasheninnikova
  • E. A. Vorontsov
MOLECULAR BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • 2 Downloads

A polymer-containing anastrozole formulation (PAF) in the form of micronized particles based on a copolymer of lactic and glycolic acids with a terminal carboxyl group (PLGA-COOH 50/50) was prepared. The pharmacokinetics and biodistribution of anastrozole in the organs of rats after single intramuscular (i.m.) doses of PAF and anastrozole substance 6.8 mg/kg (in terms of active substance) were studied. The pharmacokinetics of anastrozole were found to be linear over the range 1.7 – 6.8 mg/kg, in terms of AUC(0 – 336) (R2 = 0.99989) and Cmax (R2 = 0.99767) after i.m. administration of the PAF developed here to rats. Use of PAF was found to slow the absorption and elimination of anastrozole in the blood, liver, kidneys, bone, adrenals, fatty tissue, and muscles in rats, as evidenced by increases in the T1/2 and MRT and decreases in Cl, Kel, and Cmax/AUC(0 – 336). Tissue availability of anastrozole (fT) in the adrenals, fatty tissue, and muscles of rats after administration as PAF was 1.12, 1.44, and 1.37 times higher respectively than after administration of anastrozole substance.

Keywords

anastrozole aromatase copolymer of lactic and glycolic acids pharmacokinetics biodistribution tissue availability 

References

  1. 1.
    N. Mauras, K. O. O’Brien, K. O. Klei, et al., J. Clin. Endocrinol. Metab., 85(7), 2370 – 2377 (2000).PubMedGoogle Scholar
  2. 2.
    L. E. Ziganshina, V. K. Lepakhin, V. I. Petrov, et al. (eds.), The Great Drug Reference Book [in Russian], GEOTAR-Media, Moscow (2011), pp. 195 – 198.Google Scholar
  3. 3.
    K. V. Alekseev, I. A. Gritskova, and S. A. Kedik, Polymers for Pharmaceutical Technology [in Russian], Institute of Pharmaceutical Technologies, Moscow (2011), 468 – 497.Google Scholar
  4. 4.
    A. S. Zidan, O. A. Sammour, M. A. Hammad, et al., AAPS Pharm. Sci. Tech., 7(3), E38-E46 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Kumar and K. K. Sawant, J. Microencapsul., 31(2), 105 – 114 (2014).CrossRefGoogle Scholar
  6. 6.
    International Patent WO 2007026145, Chem. Abstr., 146, 101998 (2007).Google Scholar
  7. 7.
    International Patent WO 2014019972, Chem. Abstr., 160, 255475 (2014).Google Scholar
  8. 8.
    Russian Federation Patent RF 2548722, Chem. Abstr., 162, 507015 (2015).Google Scholar
  9. 9.
    Russian Federation Patent RF 2659689, Chem. Abstr., 169, 150887 (2018).Google Scholar
  10. 10.
    A. N. Mironov (ed.), Guidelines for Preclinical Studies of Medicines [in Russian], Grif i K., Moscow (2012), Part 1, pp. 43 – 853.Google Scholar
  11. 11.
    V. D. Sundar, R. Vijayalakshmi, V. S. H. Naveena, et al., Pharma Chem., 6(1), 427 – 431 (2014).Google Scholar
  12. 12.
    T. G. Park, J. Control. Rel.,30(2), 161 – 73 (1994).CrossRefGoogle Scholar
  13. 13.
    O. I. Corrigan, X. Li, Eur. J. Pharm. Sci., 37(3 – 4), 477 – 485 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • N. V. Gukasova
    • 1
    Email author
  • I. A. Tubasheva
    • 1
  • S. L. Kuznetsov
    • 1
  • S. V. Aleshin
    • 1
  • V. V. Sokolov
    • 2
  • T. A. Antipova
    • 2
  • Yu. I. Poltavets
    • 1
  • A. A. Krasheninnikova
    • 1
  • E. A. Vorontsov
    • 1
  1. 1.Kurchatov Institute National Research Center, 1 Academician Kurchatov SquareMoscowRussia
  2. 2.OAO All-Russian Science Center for Molecular Diagnostics and TreatmentMoscowRussia

Personalised recommendations