Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 10, pp 860–862 | Cite as

Chemoprevention of Radiation-Induced Carcinogenesis Using Decoction of Meadowsweet (Filipendula Ulmaria) Flowers

  • V. G. Bespalov
  • D. A. Baranenko
  • V. A. Aleksandrov
  • A. L. Semenov
  • E. G. Kovan’ko
  • S. D. Ivanov
Article
  • 27 Downloads

The ability of the decoction of meadowsweet flowers (Filipendula ulmaria, FU) to inhibit tumor development in female LIO rats was demonstrated using a radiation-induced carcinogenesis model (single γ-radiation dose of 4 Gy). Over half of tumors that developed in various locations in most (79.6%) irradiated control rats were malignant. The tumors were most often located in the breast. The carcinogenesis parameters for all locations (multiplicity of all tumors and incidence of malignant tumors) and especially for breast tumors (number of tumor-bearing rats, multiplicity of all and only malignant tumors) were reduced considerably in irradiated rats that received FU with drinking water over 16 months.

Keywords

meadowsweet Filipendula ulmaria cancer chemoprevention radiation carcinogenesis 

Notes

Acknowledgments

The work was performed using state financial support for leading universities of the Russian Federation (Grant RFMEFI58117X0020).

References

  1. 1.
    V. A. Aleksandrov and V. G. Bespalov, Vopr. Onkol., 37(4), 387 – 393 (1991).PubMedGoogle Scholar
  2. 2.
    G. J. Kelloff, Adv. Cancer Res., 78, 199 – 334 (2000).CrossRefGoogle Scholar
  3. 3.
    D. Serrano, M. Lazzeroni, and B. Bonanni, Mol. Oncol., 9(5), 1008 – 1017 (2015).CrossRefGoogle Scholar
  4. 4.
    IARC Monographs on Evaluation of the Carcinogenic Risks to Human. Ionizing Radiation. Part 1: X- and Gamma (γ)-Radiation, and Neutrons, Lyon (2000), p. 75.Google Scholar
  5. 5.
    L. Shu, K.-L. Cheung, T. O. Khor, and A.-N. Kong, Cancer Metastasis Rev., 29, 483 – 502 (2010).CrossRefGoogle Scholar
  6. 6.
    V. G. Bespalov, V. A. Alexandrov, A. L. Semenov, et al., Int. J. Radiat. Biol., 90, 1191 – 1200 (2014).CrossRefGoogle Scholar
  7. 7.
    O. D. Barnaulov, I. G. Boldina, V. V. Galushko, et al., Rastit. Resur., 15(3), 399 – 407 (1979).Google Scholar
  8. 8.
    O. D. Barnaulov, A. V. Kulikov, N. A. Khalikova, et al., Rastit. Resur., 13(4), 661 – 669 (1977).Google Scholar
  9. 9.
    R. K. Lall, D. N. Syed, V. M. Adhami, et al., Int. J. Mol. Sci., 16(2), 3350 – 3376 (2015).CrossRefGoogle Scholar
  10. 10.
    V. G. Bespalov, A. Yu. Limarenko, A. S. Petrov, et al., 29(1), 9 – 20 (1993).Google Scholar
  11. 11.
    C. M. Ronckers, C. A. Erdmann, and C. E. Land, Breast Cancer Res., 7, 21 – 32 (2004).CrossRefGoogle Scholar
  12. 12.
    T. Imaoka, M. Nishimura, D. Iizuka, et al., J. Radiat. Res., 50, 281 – 293 (2009).CrossRefGoogle Scholar
  13. 13.
    C. N. Andreassen, C. Grau, and J. C. Lindegaard, Semin. Radiat. Oncol., 13, 62 – 72 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. G. Bespalov
    • 1
    • 3
  • D. A. Baranenko
    • 3
  • V. A. Aleksandrov
    • 1
    • 3
  • A. L. Semenov
    • 1
    • 2
    • 3
  • E. G. Kovan’ko
    • 2
  • S. D. Ivanov
    • 2
  1. 1.N. N. Petrov Research Institute of Oncology, Ministry of Health of the RFSt. PetersburgRussia
  2. 2.Russian Research Center of Radiology and Surgical Technologies, Ministry of Health of the RFSt. PetersburgRussia
  3. 3.St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations