Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 10, pp 820–824 | Cite as

Synthesis and Antiviral Activity of Polycyclic N-Amidoimides Based on 4-Oxatetracyclo-[5.3.2.02, 6.08, 10]Dodec-11-Ene-3,5-Dione

  • B. A. Selivanov
  • N. I. Bormotov
  • L. N. Shishkina
  • E. F. Belanov
  • O. A. Serova
  • A. S. Kabanov
  • O. Yu. Mazurkov
  • A. Ya. TikhonovEmail author
SEARCH FOR NEW DRUGS
  • 35 Downloads

A series of novel polycyclic N-amidoimides were synthesized by reacting 4-oxatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione with hydrazides of benzoic acids, arylaminoacetic acid, and oxalic acid. The most pronounced antiviral activities against Vaccinia virus were observed for 4-hydroxy-N-(3,5-dioxo-4-azatetracyclo[5.3.2.02, 6.08, 10]dodec-11-en-4-yl)-3-nitrobenzamide, N-(3,5-dioxo-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-en-4-yl)-N′-[(3-trifluoromethyl)phenyl]ethanediamide, and N-(2,6-dimethylphenyl)-N′-(3,5-dioxo-4-azatetracyclo-5.3.2.02,6,08,10]dodec-11-en-4-yl)ethanediamide.

Keywords

polycyclic amidoimides hydrazides benzoic acids arylaminoacetic acid Vaccinia virus antiviral activity pharmacological activity 

References

  1. 1.
    T. R. Bailey, S. R. Rippin, E. Opsitnick, et al., J. Med. Chem., 50(7), 1442 – 1444 (2007).CrossRefGoogle Scholar
  2. 2.
    R. Jordan, T. R. Bailey, et al., US Pat. Appl. 20120020922, Jan. 26, 2012; Chem. Abstr., 156, 222467 (2012).Google Scholar
  3. 3.
    B. A. Selivanov, A. Ya. Tikhonov, et al., RU Pat. 2,412,168, Feb. 20, 2011; Chem. Abstr., 154, 276035 (2011).Google Scholar
  4. 4.
    B. A. Selivanov, E. F. Belanov, N. I. Bormotov, et al., Dokl. Akad. Nauk, 441(3), 414 – 418 (2011).Google Scholar
  5. 5.
    B. A. Selivanov, A. Ya. Tikhonov, et al., RU Pat. 2,424,800, Jul. 27, 2011; Chem. Abstr., 155, 231116 (2011).Google Scholar
  6. 6.
    B. A. Selivanov, A. Ya. Tikhonov, et al., RU Pat. 2,440,983, Jan. 27, 2012; Chem. Abstr., 156, 230441 (2012).Google Scholar
  7. 7.
    K.-H. Tsai, US Pat. Appl. 20140028545, Jan. 30, 2014; Chem. Abstr., 156, 222467 (2012).Google Scholar
  8. 8.
    E. Torres, M. D. Duque, P. Camps, et al., Chem. Med. Chem., 5, 2072 – 2078 (2010).CrossRefGoogle Scholar
  9. 9.
    B. A. Selivanov, A. Ya. Tikhonov, E. F. Belanov, et al., Khim.-farm. Zh., 51(6), 13 – 17 (2017); Pharm. Chem. J., 51(6), 439 – 443 (2017).Google Scholar
  10. 10.
    H. Ishitobi, H. Tanida, K. Tori, and T. Tsuji, Bull. Chem. Soc. Jpn., 44, 2993 – 3000 (1971).CrossRefGoogle Scholar
  11. 11.
    X. Zhang, B. Tang, P. Zhang, et al., J. Mol. Struct., 846, No. 11, 55 – 64 (2007).CrossRefGoogle Scholar
  12. 12.
    N. Soni, J. P. Barthwal, A. K. Saxena, et al., J. Heterocycl. Chem., 19(1), 29 – 32 (1982).CrossRefGoogle Scholar
  13. 13.
    A. Ling, V. Gregor, et al., US Pat. 6,613,942, Sept. 2, 2003; Chem. Abstr., 139, 230483 (2003).Google Scholar
  14. 14.
    Y. Zhang and R. B. Silverman, Tetrahedron Lett., 54, 573 – 575 (2013).CrossRefGoogle Scholar
  15. 15.
    K. Chakraborty, C. Devakumar, S. M. S. Tomar, et al., J. Agric. Food Chem., 51(4), 992 – 998 (2003).CrossRefGoogle Scholar
  16. 16.
    T. E. Filippova, Ts. Sh. Chzhan, et al., RU Pat. 2,247,716, Mar. 10, 2005; Chem. Abstr., 142, 297801 (2005).Google Scholar
  17. 17.
    R. O. Baker, M. Bray, and J. W. Huggins, Antiviral Res., 57, 13 – 23 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. A. Selivanov
    • 1
  • N. I. Bormotov
    • 2
  • L. N. Shishkina
    • 2
  • E. F. Belanov
    • 2
  • O. A. Serova
    • 2
  • A. S. Kabanov
    • 2
  • O. Yu. Mazurkov
    • 2
  • A. Ya. Tikhonov
    • 1
    Email author
  1. 1.N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences (NIOCh, SB, RAS)Novosibirsk 90Russia
  2. 2.Vector State Research Center for Virology and BiotechnologyKol’tsovoRussia

Personalised recommendations