Advertisement

Synthesis and Antimicrobial Activity of 4-(4-Acetylphenyl)-3-Hydroxy-2H-Chromen-2-One Derivatives

  • O. V. Rusnak
  • R. Z. Lytvyn
  • O. V. Skripskaya
  • O. O. Blinder
  • Kh. E. Pitkovych
  • P. I. Yagodinets
  • M. D. ObushakEmail author
Article
  • 1 Downloads

Reactions of 4-(4-bromoacetylphenyl)-3-hydroxy-2H-chromen-2-one with Py, 4-methylpyridine, quinoline, and benzo[f]quinoline produced quaternary salts; with dinucleophiles, derivatives of thiazole, imidazo[1,2-a]pyridine, and imidazo[1,2-a]pyrimidine. Several of the target compounds exhibited high antimicrobial activity that indicated further research on these compounds is warranted.

Keywords

neoflavonoids 3-hydroxycoumarin derivatives antimicrobial activity quaternary salts α-bromoketones heterocyclization 

References

  1. 1.
    L. Verotta, E. Lovaglio, G. Vidari, et al., Phytochemistry, 65, 2867 – 2879 (2004).CrossRefGoogle Scholar
  2. 2.
    C. Billard, F. Menasria, C. Quiney, et al., Exp. Hematol., 36, 1625 – 1633 (2008).CrossRefGoogle Scholar
  3. 3.
    C. Rappl, P. Barbier, V. Bourgarel-Rey, et al., Biochemistry, 45(30), 9210 – 9218 (2006).CrossRefGoogle Scholar
  4. 4.
    R. Argotte-Ramos, G. Ramirez-Avila, M. C. Rodriguez-Gutierrez, et al., J. Nat. Prod., 69, 1442 – 1444 (2006); doi  https://doi.org/10.1021/np060233p.CrossRefPubMedGoogle Scholar
  5. 5.
    A. M. Zhyvoloup, S. M. Yarmoluk, M. M. Garazd, et al., Biopolym. Cell, 14(6), 553 – 558 (1998); http: //www.biopolymers.org.ua/pdf/uk/14/6/553/biopolym.cell-1998-14-6-553-uk.pdf.CrossRefGoogle Scholar
  6. 6.
    J. Crecente-Campo, M. P. Vazquez-Tato, and J. A. Seijas, Eur. J. Org. Chem., 21, 4130 – 4135 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Combes, P. Barbier, S. Douillard, et al., J. Med. Chem., 54, 3153 – 3162 (2011).CrossRefGoogle Scholar
  8. 8.
    J.-T. Pierson, A. Dumetre, S. Hutter, et al., Eur. J. Med. Chem., 45, 864 – 869 (2010).CrossRefGoogle Scholar
  9. 9.
    C. Bailly, C. Bal, P. Barbier, et al., J. Med. Chem., 46(25), 5437 – 5444 (2003).CrossRefGoogle Scholar
  10. 10.
    T. Kawate, N. Iwase, M. Shimizu, et al., Bioorg. Med. Chem. Lett., 23(22), 6052 – 6059 (2013).CrossRefGoogle Scholar
  11. 11.
    G. Feuer, Prog. Med. Chem., 10, 85 – 158 (1974).CrossRefGoogle Scholar
  12. 12.
    M. Khoobi, M. Alipour, S. Zarei, et al., Chem. Commun., 48, 2985 – 2987 (2012).CrossRefGoogle Scholar
  13. 13.
    I.-T. Hwang, S.-A. Lee, J.-S. Hwang, and K.-I. Lee, Molecules, 16, 6313 – 6321 (2011).CrossRefGoogle Scholar
  14. 14.
    M. M. Garazd, Ya. L. Garazd, and V. P. Khilya, Chem. Nat. Compd., 41(3), 245 – 271 (2005).CrossRefGoogle Scholar
  15. 15.
    Z. Karimi-Jaberi and L. Zarei, Acta Chim. Slov., 60, 178 – 183 (2013).PubMedGoogle Scholar
  16. 16.
    H. R. Shaterian and M. Aghakhanizadeh, Chin. J. Catal., 34, 1690 – 1696 (2013).CrossRefGoogle Scholar
  17. 17.
    B. Karami, S. Khodabakhshi, and K. Eskandari, Tetrahedron Lett., 53, 1445 – 1446 (2012).CrossRefGoogle Scholar
  18. 18.
    B. C. Raju, T. H. Babu, and J. M. Rao, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 48, 120 – 123 (2009).Google Scholar
  19. 19.
    D. M. X. Donnelly, J.-P. Finet, P. J. Guiry, et al., Synth. Commun., 29(15), 2719 – 2730 (1999).CrossRefGoogle Scholar
  20. 20.
    G. M. Boland, D. M. X. Donnelly, J.-P. Finet, et al., J. Chem. Soc., Perkin Trans. 1, 2591 – 2597 (1996).Google Scholar
  21. 21.
    L. Schio, F. Chatreaux, and M. Klich, Tetrahedron Lett., 41, 1543 – 1547 (2000).CrossRefGoogle Scholar
  22. 22.
    A. Yu. Fedorov, A. V. Nyuchev, and I. P. Beletskaya, Khim. Geterotsikl. Soedin., 48(1), 175 – 186 (2012); A. Yu. Fedorov, A. V. Nyuchev, and I. P. Beletskaya, Chem. Heterocycl. Compd., 48(1), 166 – 178 (2012).Google Scholar
  23. 23.
    O. V. Skripskaya, N. O. Feilo, A. O. Neshchadin, et al., Zh. Org. Khim., 49(11), 1673 – 1678 (2013); O. V. Skripskaya, N. O. Feilo, A. O. Neshchadin, et al., Russ. J. Org. Chem., 49(11), 1655 – 1660 (2013).Google Scholar
  24. 24.
    O. V. Elenich, R. Z. Lytvyn, O. V. Blinder, et al., Khim.-farm. Zh., 52(12), 7 – 11 (2018); O. V. Elenich, R. Z. Lytvyn, O. V. Blinder, et al., Pharm. Chem. J., 52(12), 969 – 974 (2018).Google Scholar
  25. 25.
    D. P. Becker, D. L. Flynn, et al., US Pat. 5,260,303, Nov. 1, 1993; Chem. Abstr., 118, 254908n (1993).Google Scholar
  26. 26.
    J. J. Kaminski, C. Puchalski, D. M. Solomon, et al., J. Med. Chem., 32, 1686 – 1700 (1989).CrossRefGoogle Scholar
  27. 27.
    K. Srimanth, V. R. Rao, and D. R. Krishna, Arzneim. Forsch., 52, 388 – 392 (2002).Google Scholar
  28. 28.
    I. V. Orlenko, S. N. Kovalenko, I. A. Zhuravel’, et al., Fiziol. Akt. Rechovini, 32(2), 25 – 28 (2001); I. V. Orlenko, S. M. Kovalenko, I. O. Zhuravel, et al., Physiol. Act. Subst., 32(2), 25 – 28 (2001).Google Scholar
  29. 29.
    Guide for Experimental (Preclinical) Studies of New Drugs [in Russian], Biont, Moscow, 2000, pp. 264 – 273.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. V. Rusnak
    • 1
  • R. Z. Lytvyn
    • 2
  • O. V. Skripskaya
    • 1
  • O. O. Blinder
    • 3
  • Kh. E. Pitkovych
    • 2
  • P. I. Yagodinets
    • 1
  • M. D. Obushak
    • 2
    Email author
  1. 1.Yu. Fedkovych Chernivtsi National UniversityChernivtsiUkraine
  2. 2.Ivan Franko National University of LvivLvivUkraine
  3. 3.Bukovinian State Medical UniversityChernivtsiUkraine

Personalised recommendations