Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 6, pp 511–515 | Cite as

Uracil Hydroxybenzamides as Potential Antidiabetic Prodrugs

  • A. K. Brel’
  • A. A. Spasov
  • S. V. LisinaEmail author
  • S. S. Popov
  • A. F. Kucheryavenko
  • R. A. Litvinov
  • O. A. Salaznikova
  • A. I. Rashchenko
Article
  • 28 Downloads

A series of N1, N3-bis-hydroxybenzoyl, -acetoxybenzoyl, and -methoxybenzoyl uracil derivatives were synthesized. All compounds were screened for the ability to rupture protein cross links and antiglycating, chelating, and antiaggregant properties, which are most significant for pharmacological treatment of thrombosis and angio-, nephro-, encephalo-, and cardiopathies. 1,3-bis-(4-Methoxybenzoyl)pyrimidine-2,4(1H,3H)-dione was a promising antidiabetic agent with all studied activities.

Keywords

hydroxybenzamides uracil antidiabetic activity chelating activity 

References

  1. 1.
    A. Palasz and D. Ciez, Eur. J. Med. Chem., 97(1), 582 – 611 (2015); DOI:  https://doi.org/10.1016/j.ejmech.2014.10.008.CrossRefPubMedGoogle Scholar
  2. 2.
    T. Pillaiyar, M. Kose, V. Namasivayam, et al., ACS Omega, 3(3), 3365 – 3383 (2018); DOI:  https://doi.org/10.1021/acsomega.7b02092.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    A. A. Spasov, D. A. Babkov, V. A. Sysoeva, et al., Arch. Pharm., 350(12), 1700226 (2017); DOI: https://doi.org/10.1002/ardp. 201700226.Google Scholar
  4. 4.
    H. Kawada and P. F. Kador, J. Med. Chem., 58(22), 8796 – 8805 (2015).CrossRefGoogle Scholar
  5. 5.
    X. Deng, L. Han, J. Zhou, et al., Bioorg. Chem., 75, 357 – 367 (2017).CrossRefGoogle Scholar
  6. 6.
    K. Hess and P. J. Grant, Thromb. Haemostasis, 1, 43 – 54 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. K. Koo, J. M. Kim, J. Y. Koo, et al., Pharmazie, 65(8), 624 – 628 (2010); DOI:  https://doi.org/10.1691/ph.2010.9870.CrossRefPubMedGoogle Scholar
  8. 8.
    R. Nagai, D. B. Murray, T. O. Metz, and J. W. Baynes, Diabetes, 61(3), 549 – 559 (2012); DOI: https://doi.org/10.2337/db11–1120.Google Scholar
  9. 9.
    A. K. Brel’ and S. V. Lisina, Zh. Org. Khim., 54(2), 312 – 314 (2018).Google Scholar
  10. 10.
    A. K. Brel’, S. V. Lisina, and S. S. Popov, RU Pat. 2,601,309, Nov. 10, 2016.Google Scholar
  11. 11.
    A. K. Brel’, S. V. Lisina, Yu. N. Budaeva, et al., Zh. Obshch. Khim., 85(9), 1561 – 1563 (2015); DOI:  https://doi.org/10.1134/S1070363215090261.CrossRefGoogle Scholar
  12. 12.
    A. K. Brel’, A. A. Spasov, et al., RU Pat. 2,643,520, Feb. 2, 2018; Byull. Izobret., No. 26 (2018).Google Scholar
  13. 13.
    A. A. Spasov, A. F. Kucheryavenko, and O. A. Salaznikova, Eksp. Klin. Farmakol., 5, 31 – 34 (2009).Google Scholar
  14. 14.
    D. D. Shamshina and R. A. Litvinov, Vestn. VolgGMU, 1(65), 115 – 117 (2018).Google Scholar
  15. 15.
    S. Vasan, P. Foiles, and H. Founds, Arch. Biochem. Biophys., 419(1), 89 – 96 (2003).CrossRefGoogle Scholar
  16. 16.
    RU Pat. 2,444,517, 2012.Google Scholar
  17. 17.
    Z. A. Gabbasov, Byull. Eksp. Biol. Med., 10, 437 – 439 (1989).Google Scholar
  18. 18.
    G. R. Galstyan, Russ. Med. Zh., 27, 1266 – 1271 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. K. Brel’
    • 1
  • A. A. Spasov
    • 1
  • S. V. Lisina
    • 1
    Email author
  • S. S. Popov
    • 1
  • A. F. Kucheryavenko
    • 1
  • R. A. Litvinov
    • 1
  • O. A. Salaznikova
    • 1
  • A. I. Rashchenko
    • 1
  1. 1.Volgograd State Medical University, Ministry of Health of the RFVolgogradRussia

Personalised recommendations