Advertisement

Quantum-Chemical Modeling of Vinpocetine Desorption from Silicon and Silicon-Dioxide Particle Surfaces

  • Yu. A. PolkovnikovaEmail author
  • A. S. Len’shin
  • A. I. Slivkin
Article
  • 2 Downloads

Activation energies for desorption of vinpocetine from silicon (Si) and silicon-dioxide (SiO2) surfaces were analyzed and compared. The molecular mechanism of vinpocetine desorption was found to differ depending on the adsorbent and ionization state, which in turn depended on the pH. Nonpolar interactions between the adsorbent and vinpocetine played a decisive role during desorption from a hydrophobic Si surface without substituents. Quantum-chemical estimates of the activation energy led to the conclusion that vinpocetine in aqueous solution at pH 6.8 and 7 was bound more strongly to SiO2 than to Si. The activation energies for vinpocetine desorption from Si and SiO2 surfaces at pH 2 were statistically indistinguishable and statistically significantly less than the activation energies at pH 6.8 and 7.

Keywords

quantum-chemical modeling desorption silicon silicon dioxide vinpocetine 

References

  1. 1.
    Yu. A. Penkina, O. P. Pavlovskaya, and G. V. Avramenko, Khim.-farm. Zh., 51(1), 46 – 50 (2017); Pharm. Chem. J., 51(1), 46 – 50 (2017).Google Scholar
  2. 2.
    Yu. A. Polkovnikova and A. I. Slivkin, Khim.-farm. Zh., 50(8), 56 – 58 (2016); Pharm. Chem. J., 50(8), 56 – 58 (2016).Google Scholar
  3. 3.
    N. B. Demina, S. A. Skatkov, and A. I. Tentsova, Farmatsiya, No. 4, 47 – 50 (2012).Google Scholar
  4. 4.
    A. S. Lenshin, Yu. A. Polkovnikova, and P. V. Seredin, Results Phys., 6, 337 – 338 (2017).CrossRefGoogle Scholar
  5. 5.
    O. I. Ksenofontova, A. V. Sasin, V. V. Egorov, et al., Zh. Tekh. Fiz., 84(1), 67 – 78 (2014).Google Scholar
  6. 6.
    L. Canham, Handbook of Porous Silica, Springer Int. Publ., Switzerland, 2014.Google Scholar
  7. 7.
    Yu. A. Polkovnikova, A. S. Len’shin, and P. V. Seredin, Neorg. Mater., 53(5), 479 – 485 (2017); Inorg. Mater., 53(5), 477 – 483 (2017).Google Scholar
  8. 8.
    E. V. Blynskaya, A. S. Mikheev, and K. V. Alekseev, Farmatsiya, No. 2, 40 – 42 (2015).Google Scholar
  9. 9.
    E. S. Karieva and F. Kh. Maksudova, Khim.-farm. Zh., 51(5), 60 – 64 (2017); Pharm. Chem. J., 51(5), 60 – 64 (2017).Google Scholar
  10. 10.
    D. A. Karimova, F. S. Tukhtaev, and G. S. Khaidarova, Nauka XXI Veka: Vopr., Gipotezy Otvety, No. 1 (22), 66 – 69 (2017).Google Scholar
  11. 11.
    K. K. Abgaryan, O. V. Volodina, and S. I. Uvarov, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 18(1(69)), 37 – 42 (2015).Google Scholar
  12. 12.
    T. A. Gendugov, L. I. Shcherbakova, A. A. Glushko, et al., Sovrem. Probl. Nauki Obraz., No. 2, 2 (2015); https://scienceeducation.ru/ru/article/view?id=22796 (accessed Sept. 18, 2017).
  13. 13.
    W. D. Cornell, P. Cieplak, C. I. Bayly, et al., J. Am. Chem. Soc., 117, 5179 – 5197 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. A. Polkovnikova
    • 1
    Email author
  • A. S. Len’shin
    • 1
  • A. I. Slivkin
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations