Advertisement

Lupeol from Nyctanthes arbor-tristis Inhibits Matrix Metalloproteinase Activity, Angiogenesis and Proliferation of Glioma Cells

  • Prabhu Ashwini
  • Punchappady Devasya RekhaEmail author
Article
  • 2 Downloads

Angiogenesis plays a critical role in cancer progression and, hence, inhibiting angiogenesis is considered as a key strategy in cancer therapy. In this study, we screened the antiangiogenic and cytotoxic properties of Nyctanthes arbor-tristis Linn. plant of family Oleaceae, which is used in traditional medicine for the treatment of cancer, arthritis and inflammation. The antiangiogenic activity of ethanolic extract of Nyctanthes arbor-trsitis (ENA) was assessed using Chick Chorioallantoic Membrane (CAM) assay. The mechanism of antiangiogenic action was evaluated via gelatin digestion assay for matrix metalloproteinase (MMP) inhibitory activity. Cytotoxic activity of the extract on glioma cells was assessed using MTT and trypan blue dye exclusion assays. ENA impaired capillary formations in chick CAM model and inhibited MMPactivity on gelatin gels in a concentration dependent manner. The extract was found to be cytotoxic on glioma cells at higher concentrations. Bioactivity guided purification of ENA using column chromatography and thin layer chromatography afforded lupeol as the active principle. Lupeol exhibits significant MMPinhibitory activity at a concentration of 2 μg/mL and cytotoxic activity on glioma with an IC50 value of 10.75 μg/mL. The results of this study hold promise for developing this plant as a source of lupeol, a highly bioactive compound against angiogenesis.

Keywords

Nyctanthes arbor-tristis Linn. antiangiogenesis cytotoxicity matrix metalloproteinase lupeol 

Notes

Acknowledgements

P. Ashwini acknowledges the Yenepoya University for providing Post-Doctoral Fellowship.

Conflict of Interest

Authors declare that they have no conflict of interest.

References

  1. 1.
    L. Jiang, J. Wu, Y. Yang, et al., BMC Cancer, 12, 406 (2012).CrossRefGoogle Scholar
  2. 2.
    J. Welti, S. Loges, S. Dimmeler, and P. Carmeliet, J. Clin. Investig., 123, 3190 – 3200 (2013).CrossRefGoogle Scholar
  3. 3.
    Y. C. Hseu, C. S. Chen, and S. Y. Wang, J. Evid. Based Complem. Altern. Med., 2011, 1 – 11 (2009).Google Scholar
  4. 4.
    K. Kessenbrock, V. Plaks, and Z. Werb, Cell, 141, 52 – 67 (2010).CrossRefGoogle Scholar
  5. 5.
    O. Benny and P. Pakneshan, Cell Adh. Migr., 3, 224 – 229 (2009).CrossRefGoogle Scholar
  6. 6.
    J. H. Kang, I. H. Han, M. K. Sung, et al., Cancer Lett., 261, 84 – 92 (2008).CrossRefGoogle Scholar
  7. 7.
    L. Xu and R. C. Bergan, Mol. Pharmacol., 70, 869 – 877 (2006).CrossRefGoogle Scholar
  8. 8.
    D. Li, L. Liu, H. Chen, et al.,, Circulation, 107, 612 – 617 (2003).CrossRefGoogle Scholar
  9. 9.
    M. K. Chetty, K. Sivaji, and T. K. Rao, Flowering Plants of Chittoor District (Andhra Pradesh, India), Students Offset Printers, Tirupati (2008), p. 193.Google Scholar
  10. 10.
    O. Amarite, P. Bhuskat, N. Patel, and C. Gadgoli, Int. J. Pharm. Biol. Sci., 2, 57 – 59 (2007).Google Scholar
  11. 11.
    R. S. Saxena, B. Gupta, and S. Lata, J. Ethnopharmacol., 81, 321 – 325 (2002).CrossRefGoogle Scholar
  12. 12.
    Y. J. You, N. H. Nam, Y. Kim, et al., Phytother. Res., 17, 341 – 344 (2003).CrossRefGoogle Scholar
  13. 13.
    Y. Liu, T. Bi, G. Wang, et al., Naunyn Schmiedebergs Arch. Pharmacol. 388, 295 – 304 (2014).CrossRefGoogle Scholar
  14. 14.
    J. S. Silvestre, R. Tamarat, T. G. Ebrahimian, et al., Circ. Res., 93, 114 – 123 (2003).CrossRefGoogle Scholar
  15. 15.
    M. Polette and P. Birembaut, Int. J. Biochem. Cell Biol., 30, 1195 – 1202 (1998).CrossRefGoogle Scholar
  16. 16.
    F. V. DeFeudis, V. Papadopoulos, and K. Drieu, Fundam. Clin. Pharmacol., 17, 405 – 417 (2003).CrossRefGoogle Scholar
  17. 17.
    L. C. Meade-Tollin, E. M. Kithsiri Wijeratne, et al., J. Nat. Prod., 67, 2 – 4 (2004).CrossRefGoogle Scholar
  18. 18.
    P. M. Boscardin, A. Sartoratto, B. H. Maia, et al., J. Evid. Based Complement. Altern. Med., 2012, 1 – 8 (2012).Google Scholar
  19. 19.
    H. Enamul, N. Isham, D. D. Gupta, et al., Dhaka Univ. J. Pharm. Sci., 7, 71–74 (2008).Google Scholar
  20. 20.
    P. S. Jain and S. B. Bari, Asian J. Plant Sci., 9, 163 – 167 (2010).CrossRefGoogle Scholar
  21. 21.
    V. Saratha, S. P. Iyyam, and S. Subramanian, Int. J. Pharm. Sci. Rev. Res., 10, 54 – 57 (2011).Google Scholar
  22. 22.
    C. Tringali, C. Spatafora, and O. D. Longo, Fitoterapia, 71, 118–125 (2000).CrossRefGoogle Scholar
  23. 23.
    L. C. Lin, C. J. Chou, Y. and C. Kuo, J. Nat. Prod., 64, 674 – 676 (2001).Google Scholar
  24. 24.
    M. Saleem, F. Afaq, V. M. Adhami, and H. Mukhtar, Oncogene, 23, 5203 – 5214 (2004).CrossRefGoogle Scholar
  25. 25.
    U. K. Basuroy and E. W. Gerner, J. Biochem., 139, 27–3 3 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Saleem, N. Maddodi, M. Abu Zaid, et al., Clin. Cancer Res., 14, 2119 – 2127 (2008).CrossRefGoogle Scholar
  27. 27.
    J. Korn and S. Cramer, J. Vis. Exp., 8, 306 (2007).Google Scholar
  28. 28.
    M. M. Kim, Q. V. Ta, E. Mendis, et al., Life Sci., 79, 1436 – 1443 (2006).CrossRefGoogle Scholar
  29. 29.
    T. Mosmann, J. Immunol. Meth., 65, 55 – 63 (1983).CrossRefGoogle Scholar
  30. 30.
    W. Strober, Current Protocols in Immunology, John Wiley & Sons: Chichester (1997), Appendix 3B.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Yenepoya Research CentreYenepoya UniversityMangaloreIndia

Personalised recommendations