Advertisement

Polyene Macrolide Antibotic Derivatives: Preparation, Overcoming Drug Resistance, and Prospects for Use in Medical Practice (Review)

  • V. V. BelakhovEmail author
  • A. V. Garabadzhiu
  • T. B. Chistyakova
SEARCH FOR NEW DRUGS

Series of semi-synthetic polyene macrolide antibiotics (PMAs) that were prepared by chemical modification in original research by the authors are reviewed. Chemical modification, in particular phosphorylation, was shown to produce highly efficacious PMAs with low toxicities and extended spectra of biological activity. The prospects of using liposomal and nano-derivatives of these antifungal antibiotics are discussed. Crucial issues related to the resistance of pathogenic fungi and the expanding distribution of invasive mycoses are identified. Semi-synthetic PMAs are shown to be highly effective at preventing and treating invasive mycoses and opportunistic fungal infections occurring in AIDS patients. Special attention is paid to structure—activity relationships for the semi-synthetic PMAs. Possible mechanisms of action of these compounds on pathogenic fungi are discussed. An automated intellectual information system was developed for selecting the optimal conditions for development, synthesis, and application in medical practice of new PMAs.

Keywords

polyene macrolide antibiotics chemical modification semi-synthetic derivatives nanotechnology drug resistance invasive mycoses AIDS automated intellectual information system 

References

  1. 1.
    A. V. Katlinskii, Yu. O. Sazykin, M. V. Bibikova, and S. N. Orekhov, Antibiot. Khimioter., 48(9), 20 – 27 (2003).PubMedGoogle Scholar
  2. 2.
    J. D. Nosanchuk, Recent Pat. Anti-Infect. Drug Discovery, 1(1), 75 – 84 (2006).CrossRefGoogle Scholar
  3. 3.
    E. Jucker (ed.), Antifungal Agents: Advances and Problems, Special Topic: Progress in Drug Research, Basel, Birkhaeuser Verlag (2003).Google Scholar
  4. 4.
    A. Yu. Sergeev and Yu. V. Sergeev, Candidiasis. Nature of Infection, Mechanism of Aggression and Protection, Laboratory Diagnosis, Clinic and Treatment [in Russian], Triada-X, Moscow (2001), pp. 187 – 188.Google Scholar
  5. 5.
    A. Yu. Sergeev and Yu. V. Sergeev, Fungal Infections. Handbook for Physicians [in Russian], BINOM, Moscow (2008), pp. 142 – 145.Google Scholar
  6. 6.
    S. N. Kozlov and L. S. Strachunskii, Modern Antimicrobial Chemotherapy [in Russian], OOO Meditsinskoe Informatsionnoe Agentstvo, Moscow (2009), pp. 19 – 23.Google Scholar
  7. 7.
    N. N. Klimko and A. V. Veselov, Klin. Mikrobiol. Antimikrob. Khimioter., 5(4), 342 – 353 (2003).Google Scholar
  8. 8.
    N. N. Klimko and A. S. Kolbin, Probl. Med. Mikol., 7(3), 3 – 11 (2005).Google Scholar
  9. 9.
    A. V. Veselov, Klin. Mikrobiol. Antimicrob. Khimioter., 9(1), 73 – 80 (2007).Google Scholar
  10. 10.
    Yu. V. Sergeev, B. I. Shpigel’, and A. Yu. Sergeev, Pharmacotherapy of Mycoses [in Russian], Meditsina dlya Vsekh, Moscow (2003).Google Scholar
  11. 11.
    R. A. Aravinskii, N. N. Klimko, and N. V. Vasil’eva, Diagnosis of Mycoses [in Russian], Izdatel’skii Dom SPbMAPO, St. Petersburg (2004).Google Scholar
  12. 12.
    S. B. Zotchev, Curr. Med. Chem., 10(3), 211 – 223 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    A. T. Coste and P. Vandeputte (eds.), Antifungals: From Genomics to Resistance and the Development of Novel Agents, Caister Academic Press, Norfolk, UK (2015).Google Scholar
  14. 14.
    G. San-Blas and R. A. Calderone (eds.), Pathogenic Fungi: Insights in Molecular Biology, Caister Academic Press, Norfolk, UK (2008).Google Scholar
  15. 15.
    E. Reiss, H. J. Shadomy, and G. M. Lyon, Fundamental Medical Mycology, Wiley-Blackwell, Hoboken, NJ, USA (2011).CrossRefGoogle Scholar
  16. 16.
    D. J. Sillivan and G. P. Morgan (eds.), Human Pathogenic Fungi: Molecular Biology and Pathogenic Mechanisms, Caister Academic Press, Norfolk, UK (2014).Google Scholar
  17. 17.
    S. Omura (ed.), Macrolide Antibiotics: Chemistry, Biology and Practice, Academic Press, New York (2002).Google Scholar
  18. 18.
    M. Masayuki and K. Gomi (eds.), Aspergillus: Molecular Biology and Genomics, Caister Academic Press, Norfolk, UK (2010).Google Scholar
  19. 19.
    R. Grillot and B. Lebeau, in: Antimicrobial Agents, A. Bryskier (ed.), American Society for Microbiology, Washington (2005), pp. 1260 – 1287.Google Scholar
  20. 20.
    T. C. White, J. Harry, and B. G. Oliver, in: Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research, K. Esser and J. W. Bennet (eds.), Springer-Verlag, Berlin (2004), pp. 319 – 337.Google Scholar
  21. 21.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, Khim.- farm. Zh., 27(2), 14 – 21 (1993).Google Scholar
  22. 22.
    Yu. D. Shenin and V. V. Belakhov, Antibiot. Khimioter., 42(4), 34 – 46 (1997).PubMedGoogle Scholar
  23. 23.
    A. A. Volmer, A. M. Szpilman, and E. M. Carreira, Nat. Prod. Rep., 27(9), 1329 – 1349 (2010).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Sedlak, Mini-Rev. Med. Chem., 9(11), 1306 – 1316 (2009).CrossRefPubMedGoogle Scholar
  25. 25.
    S. E. Solov’eva, E. N. Olsuf’eva, and M. N. Preobrazhenskaya, Usp. Khim., 80(20), 115 – 138 (2011).Google Scholar
  26. 26.
    R. G. Hall, Chimia, 64(1–2), 34 – 36 (2010).CrossRefPubMedGoogle Scholar
  27. 27.
    M. Jokanovic, Curr. Top. Med. Chem. (Sharjah, United Arab Emirates), 12(16), 1775 – 1789 (2012).CrossRefGoogle Scholar
  28. 28.
    E. Balint, E. Fazekas, and J. Takacs, Phosphorus Sulfur Silicon Relat. Elem., 188(1–3), 48 – 50 (2013).CrossRefGoogle Scholar
  29. 29.
    S. S. Le Corre, M. Berchel, H. Couthon-Gourves, et al., Beilstein J. Org. Chem., 10, 1166 – 1196 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    D. E. C. Corbridge, Phosphorus: Chemistry, Biochemistry and Technology, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2013).CrossRefGoogle Scholar
  31. 31.
    M. Dziegielewski, J. Pieta, E. Kaminska, and L. Albrecht, Eur. J. Org. Chem., 2015(4), 677 – 702 (2015).CrossRefGoogle Scholar
  32. 32.
    H. R. Hudson, N. J. Wardle, S. W. A. Bligh, et al., Mini-Rev. Med. Chem., 12(4), 313 – 325 (2012).CrossRefPubMedGoogle Scholar
  33. 33.
    L. Albrecht, A. Albrecht, H. Krawczyk, and K. A. Jorgensen, Chem. Eur. J., 16(1), 28 – 48 (2010).CrossRefPubMedGoogle Scholar
  34. 34.
    Q. Xi, Y-B. Zhou, C.-Q. Zhao, et al., Mini-Rev. Med. Chem., 13(6), 824 – 835 (2013).Google Scholar
  35. 35.
    B. Lejczak and P. Kafarski, in: Topics in Heterocyclic Chemistry, Vol. 20, Phosphorous Heterocycles I, R. K. Bansal (ed.), Springer, (2009), pp. 31 – 63.Google Scholar
  36. 36.
    A. Mucha, P. Kafarski, and L. Berliki, J. Med. Chem., 54(17), 5955 – 5980 (2011).CrossRefPubMedGoogle Scholar
  37. 37.
    V. I. Krutikov, A. V. Erkin, and V. V. Krutikova, Zh. Obshch. Khim., 82(5), 713 – 718 (2012).Google Scholar
  38. 38.
    S. Demkowicz, J. Rachon, M. Dawsco, and W. Kozak, RSC Adv., 6(9), 7101 – 7112 (2016).CrossRefGoogle Scholar
  39. 39.
    G. Keglevich and E. Balint, Molecules, 17(11), 12821 – 12835 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    V. V. Belakhov, Yu. D. Shenin, B. I. Ionin, et al., Antibiot. Khimioter., 35(8), 31 – 35 (1990).PubMedGoogle Scholar
  41. 41.
    V. V. Belakhov, Yu. D. Shenin, B. I. Ionin, et al., Khim.-farm. Zh., 25(11), 45 – 48 (1991).Google Scholar
  42. 42.
    V. V. Belakhov, Yu. D. Shenin, R. A. Araviiskii, and E. B. Shtil’bans, Antibiot. Khimioter., 41(7/8), 4 – 8 (1996).PubMedGoogle Scholar
  43. 43.
    V. V. Belakhov and Yu. D. Shenin, Khim.-farm. Zh., 41(6), 26 – 30 (2007).Google Scholar
  44. 44.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, Russ. J. Gen. Chem., 78(2), 305 – 312 (2008).CrossRefGoogle Scholar
  45. 45.
    V. V. Belakhov, V. A. Kolodyaznaya, and B. I. Ionin, Khim. Prom-st., 89(2), 64 – 76 (2012).Google Scholar
  46. 46.
    V. V. Belakhov and A. V. Garabadzhiu, Zh. Obshch. Khim., 85(2), 236 – 244 (2015).Google Scholar
  47. 47.
    V. V. Belakhov, A. V. Garabadzhiu, and B. I. Ionin, in: Proceedings of the VIIIth International Scientific and Practical Conference “Perspective Directions of World’s Science” Byal-GRAD OOD, Sofia, Bulgaria, 34, 80 – 84 (2012).Google Scholar
  48. 48.
    V. V. Belakhov and B. I. Ionin, Izv. SPbGTI(TU), No. 17, 51 – 52 (2012).Google Scholar
  49. 49.
    V. V. Belakhov, V. A. Kolodyaznaya, and A. V. Garabadzhiu, Zh. Obshch. Khim., 84(10), 1676 – 1684 (2014).Google Scholar
  50. 50.
    V. V. Belakhov, A. V. Garabadzhiu, T. B. Chistyakova, et al., Zh. Obshch. Khim., 86(3), 427 – 436 (2016).Google Scholar
  51. 51.
    V. V. Belakhov, V. A. Kolodyaznaya, A. V. Garabadzhiu, et al., in: Progress in Medical Mycology [in Russian], XVI, National Academy of Mycology, Moscow (2016), pp. 114 – 119.Google Scholar
  52. 52.
    A. V. Dogadina, V. V. Belakhov, B. I. Ionin, et al., in: Proceedings of the First Russian Conference on Medicinal Chemistry (MedChem Russia – 2013) [in Russian], RBR Print, Moscow (2013), p. 55.Google Scholar
  53. 53.
    V. V. Belakhov, A. V. Dogadina, and B. I. Ionin, Izv. SPbGTI(TU), No. 19, 67 – 70 (2013).Google Scholar
  54. 54.
    Yu. D. Shenin, V. V. Belakhov, L. I. Shatik, and R. A. Araviiskii, Antibiot. Khimioter., 43(12), 8 – 11 (1998).PubMedGoogle Scholar
  55. 55.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, Khim.-farm. Zh., 32(2), 52 – 53 (1998).Google Scholar
  56. 56.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, Khim.-farm. Zh., 41, No. 9, 26 – 28 (2007).Google Scholar
  57. 57.
    V. V. Belakhov, A. A. Levina, Yu. D. Shenin, and B. I. Ionin, Khim.-farm. Zh., 25(3), 86 – 87 (1991).Google Scholar
  58. 58.
    V. V. Belakhov and Yu. D. Shenin, Khim.-farm. Zh., 42(7), 15 – 18 (2008).Google Scholar
  59. 59.
    V. V. Belakhov and Yu. D. Shenin, Khim.-farm. Zh., 41(7), 20 – 24 (2007).Google Scholar
  60. 60.
    V. V. Belakhov and V. A. Kolodyaznaya, in: Progress in Medical Mycology [in Russian], XII, National Academy of Mycology, Moscow (2014), pp. 377 – 379.Google Scholar
  61. 61.
    V. V. Belakhov, Yu. D. Shenin, and V. A. Kolodyaznaya, Izv. SPbGTI(TU), No. 23, 34 – 38 (2014).Google Scholar
  62. 62.
    V. V. Belakhov, A. V. Garabadzhiu, V. A. Kolodyaznaya, and O. V. Topkova, Khim-farm. Zh., 50(3), 7 – 15 (2016).Google Scholar
  63. 63.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, Khim.-farm. Zh., 44(9), 19 – 25 (2010).Google Scholar
  64. 64.
    V. V. Belakhov and B. I. Ionin, in: Proceedings of the Xth International Scientific-Practical Conference “Innovation in Science” [in Russian], Part 1, Sibirskaya Assotsiatsiya Konsul’tantov, Novosibirsk (2012), pp. 20 – 24.Google Scholar
  65. 65.
    V. V. Belakhov, B. I. Ionin, and V. A. Kolodyaznaya, in: Progress in Medical Mycology [in Russian], XI, National Academy of Mycology, Moscow (2013), pp. 302 – 304.Google Scholar
  66. 66.
    M. A. Shneider, Mol. Genet. Mikrobiol. Virusol., No. 5, 41 – 46 (1984).Google Scholar
  67. 67.
    M. A. Shneider and N. P. Chizhov, Vopr. Virusol., 31(1), 18 – 31 (1986).PubMedGoogle Scholar
  68. 68.
    W. Wang, et al., US Pat. 8,217,013, Jul. 10, 2012; Chem. Abstr., 150, 206299v (2009).Google Scholar
  69. 69.
    J. Lamontagne, C. Mills, R. Mao, et al., Antiviral Res., 98(1), 19 – 26 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    J. Feng, M. Weitner, W. Shi, et al., Antibiotics (Basel, Switz.), 4(3), 397 – 410 (2015).Google Scholar
  71. 71.
    P. Vaishnav and A. L. Demain, Biotechnol. Adv., 29(2), 223 – 229 (2011).CrossRefPubMedGoogle Scholar
  72. 72.
    Y. Chen, S. Wang, and X. Lu, Blood, 117(23), 6392 – 6403 (2011).CrossRefPubMedGoogle Scholar
  73. 73.
    M. Altendorfer, R. Mario, F. Sasse, et al., Org. Biomol. Chem., 11(13), 2116 – 2139 (2013).CrossRefPubMedGoogle Scholar
  74. 74.
    S. Sheikh, A. Sturzu, H. Kalbacher, et al., Med. Chem. (Sharjah, United Arab Emirates), 10(4), 348 – 354 (2014).CrossRefGoogle Scholar
  75. 75.
    S. Sarkar, A. Doering, F. J. Zemp, et al., Nat. Neurosci., 17(1), 46 – 55 (2014).CrossRefPubMedGoogle Scholar
  76. 76.
    T. Meszaros, A. I. Csincsi, B. Uzonyi, et al., Nanomedicine (N. Y., NY, U. S.), 12(4), 1023 – 1031 (2016).Google Scholar
  77. 77.
    Y. Kaneo, K. Taguchi, T. Tanaka, and S. Yamamoto, J. Drug Delivery Sci. Technol., 24(4), 344 – 351 (2014).CrossRefGoogle Scholar
  78. 78.
    V. Strenger, A. Meinitzer, J. Donnerer, et al., J. Antimicrob. Chemother, 69(9), 2522 – 2526 (2014).CrossRefPubMedGoogle Scholar
  79. 79.
    T. Meszaros, G. Szenasi, L. Rosivall, et al., Eur. J. Nanomed., 7(3), 257 – 262 (2015).CrossRefGoogle Scholar
  80. 80.
    V. Leonard, R. V. Alasino, I. D. Bianco, et al., Curr. Drug Delivery, 12(4), 406 – 414 (2015).CrossRefGoogle Scholar
  81. 81.
    K. M. Wasan, O. Sivak, K. Bartlett, et al., Drug Dev. Ind. Pharm., 41(9), 1425 – 1430 (2015).CrossRefPubMedGoogle Scholar
  82. 82.
    Y. Ohata, Y. Tomita, K. Suzuki, et al., Drug Metab. Pharmacokinet., 30(6), 400 – 409 (2015).CrossRefPubMedGoogle Scholar
  83. 83.
    M. Hagihara, Y. Yamagishi, J. Hirai, et al., BMC Res. Notes, 8, 510/1 – 510/4 (2015).CrossRefGoogle Scholar
  84. 84.
    N. Itoh, E. Yamamoto, T. Santa, et al., Pharm. Res., 33(6), 1440 – 1446 (2016).CrossRefPubMedGoogle Scholar
  85. 85.
    V. Colapicchioni, M. Tilo, L. Digiacomo, et al., Int. J. Biochem. Cell Biol., 75, 180 – 187 (2016).CrossRefPubMedGoogle Scholar
  86. 86.
    J. A. Jackman, T. Meszaros, T. Fulop, et al., Nanomedicine (N. Y., NY, U. S.), 12(4), 933 – 943 (2016).Google Scholar
  87. 87.
    N. R. Stone, T. Bicanic, R. Salim, and W. Hope, Drugs, 76(4), 485 – 500 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    F. Saliba, V. Delvart, P. Ichai, et al., Med. Mycol., 51, No. 2, 155 – 163 (2013).CrossRefPubMedGoogle Scholar
  89. 89.
    S. Mignani, S. El. Kazzouli, M. Bousmina, and J. P. Majoral, Adv. Drug Delivery Rev., 65(10), 1316 – 1330 (2013).CrossRefGoogle Scholar
  90. 90.
    D. R. Serrano, M. P. Ballesteros, A. G. Schatzlein, et al., Pharm. Nanotechnol., 1(4), 250 – 258 (2013).CrossRefGoogle Scholar
  91. 91.
    D. M. Casa, T. C. M. M. Carraro, L. E. Alves de Camargo, et al., J. Nanosci. Nanotechnol., 15(1), 848 – 854 (2015).CrossRefPubMedGoogle Scholar
  92. 92.
    G.-L. M. Chong, W. W. J. van de Sande, G. J. H. Dingemans, et al., J. Clin. Microbiol., 53(3), 868 – 874 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Y. M. Brustoloni, R. V. Cunha, L. Z. Consolo, et al., Infection (Munich, Ger.), 38(4), 261 – 267 (2010).Google Scholar
  94. 94.
    C. Cifani, S. Constantino, M. Massi, and L. Berrino, Acta Bio Med. Atenei Parmensis, 83(2), 154 – 163 (2012).Google Scholar
  95. 95.
    C. M. Santos, R. Barbosa de Oliveira, V. T. Arantes, et al., J. Biomed. Nanotechnol., 8(2), 322 – 329 (2012).CrossRefPubMedGoogle Scholar
  96. 96.
    C. C. Pupe, M. Villardi, C. R. Rodriges, et al., Int. J. Nanomed., 6, 2581 – 2590 (2011).Google Scholar
  97. 97.
    F. F. Campos, A. C. Calpena-Campmany, G. R. Deldago, et al., J. Pharm. Sci., 101(10), 3739 – 3752 (2012).CrossRefGoogle Scholar
  98. 98.
    M. A. Khan, A. Aljarbou, A. Khan, and M. Owais, FEMS Immunol. Med. Microbiol., 66(1), 88 – 97 (2012).CrossRefPubMedGoogle Scholar
  99. 99.
    D. Marin-Quintero, F. Fernandez-Campos, A. C. Calpena-Campmany, et al., J. Pharm. Sci., 102(11), 4015 – 4023 (2013).CrossRefPubMedGoogle Scholar
  100. 100.
    F. Fernandes-Campos, B. C. Naveros, O. L. Serano, et al., Mycoses, 56(1), 70 – 81 (2013).CrossRefGoogle Scholar
  101. 101.
    C. Martin, W. L. Low, A. Gupta, et al., in: Advances in Liposomes Research, Nova Science Publishers, Inc., New York (2014), pp. 27 – 61.Google Scholar
  102. 102.
    L. H. Samein, Int. J. Pharm. Pharm. Sci., 6(2), 592 – 597 (2014).Google Scholar
  103. 103.
    H. C. Nwuke, I. T. Nzekwe, C. O. Agubata, et al., Int. J. Pharm. Sci. Res., 6(2), 624 – 629 (2015).Google Scholar
  104. 104.
    O. Dumitriu-Buzia, N. Mardare, and C. Diaconu, Rev. Chim. (Bucharest, Rom.), 67(2), 232 – 235 (2016).Google Scholar
  105. 105.
    Z. Drulis-Kawa and A. Dorotkiewicz-Jach, Int. J. Pharm., 387(1–2), 187 – 198 (2010).CrossRefPubMedGoogle Scholar
  106. 106.
    S. R. Naik, S. K. Desai, P. D. Shah, and S. M. Wala, Recent Pat. Inflammation Allergy Drug Discovery, 7(3), 202 – 214 (2013).CrossRefGoogle Scholar
  107. 107.
    I. P. Kaur and S. Kakkar, Expert Opin. Drug Delivery, 7(11), 1303 – 1327 (2010).CrossRefGoogle Scholar
  108. 108.
    J. P. Barrett, K. A. Vardulaki, C. Conlon, et al., Clin. Ther., 25(5), 1295 – 1320 (2003).CrossRefPubMedGoogle Scholar
  109. 109.
    J. H. Rex and S. Arikan, Expert Opin. Emerging Drugs, 7(1), 3 – 32 (2002).CrossRefGoogle Scholar
  110. 110.
    V. P. Torchilin, Nat. Rev. Drug Discovery, 4(2), 142 – 160 (2005).CrossRefGoogle Scholar
  111. 111.
    I. A. Yamskov, A. N. Kuskov, K. K. Babievskii, et al., Prikl. Biokhim. Mikrobiol., 44(6), 688 – 693 (2008).Google Scholar
  112. 112.
    R. D. Seifulla, Pharmacology of Liposomal Preparations [in Russian], Globus Kontinental’, Moscow (2010).Google Scholar
  113. 113.
    V. Torchilin and V.Weissig, Liposomes: A Practical Approach, 2nd Ed., Oxford University Press, Oxford (2003).Google Scholar
  114. 114.
    T. A. ElBayoumi and V. P. Torchilin, in: Methods in Molecular Biology, Vol. 605, V. Weissig (ed.), Humana Press Inc., Totowa, NJ, USA [Liposomes, 1, 1 – 27 (2010)].Google Scholar
  115. 115.
    J. J. Torrado, R. Espada, M. P. Ballesteros, and S. Torrado-Santiago, J. Pharm. Sci., 97(7), 2405 – 2425 (2008).CrossRefPubMedGoogle Scholar
  116. 116.
    C. P. Poole and F. J. Owens, Introduction to Nanotechnology, J. Wiley, Hoboken, NJ (2003) [Russian translation, Tekhnosfera, Moscow (2007), pp. 271 – 290].Google Scholar
  117. 117.
    E. Gazit, Nanobiotechnology: Unlimited Prospects for Development [in Russian], Nauchnyi Mir, Moscow (2011), pp. 83 – 91.Google Scholar
  118. 118.
    M. H. Fulekar, Nanotechnology: Importance and Applications, I. K. International Publishing House Pvt. Ltd., New Delhi (2010), pp. 175 – 182.Google Scholar
  119. 119.
    V. I. Balabanov, Nanotechnology. Science of the Future [in Russian], Eksmo, Moscow (2009).Google Scholar
  120. 120.
    A. Lamprekht (ed.), Nanodrugs. Drug Delivery Concepts in Nanoscience [in Russian], Nauchnyi Mir, Moscow (2010).Google Scholar
  121. 121.
    C.-M. Lin and T.-Y. Lu, Recent Pat. Nanotechnol., 6(2), 105 – 113 (2012).CrossRefPubMedGoogle Scholar
  122. 122.
    S. Jayronia, A. Hardenia, and S. Jain, World J. Pharm. Res., 3(1), 295 – 310 (2014).Google Scholar
  123. 123.
    T. da Ros and F. Cataldo, Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Springer, Amsterdam (Netherlands) (2013).Google Scholar
  124. 124.
    S. Kwatra, Int. J. Drug Dev. Res., 5(1), 1 – 10 (2013).Google Scholar
  125. 125.
    V. Rani, J. Chem. Pharm. Res., 7(7), 216 – 227 (2015).Google Scholar
  126. 126.
    X. Zhu, M. Sollogoub, and Y. Zhang, Eur. J. Med. Chem., 115, 438 – 452 (2016).CrossRefPubMedGoogle Scholar
  127. 127.
    J.-F. Nierengarten and F. Langa, Fullerenes: Principles and Applications, Royal Society of Chemistry, Cambridge, UK (2011).Google Scholar
  128. 128.
    D. Iglesias, S. Bosi, M. Melchionna, et al., Curr. Topics Med. Chem. (Sharjah, United Arab Emirates), 16(18), 1976 – 1989 (2016).CrossRefGoogle Scholar
  129. 129.
    T. A. Kolesnikova, B. N. Khlebtsov, D. G. Shchukin, and D. A. Gorin, Ross. Nanotekhnol., 3(9), 74 – 83 (2008).Google Scholar
  130. 130.
    M. A. Petrukhina and L. T. Scott (eds.), Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, John Wiley & Sons, New York (2011).Google Scholar
  131. 131.
    E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2011).CrossRefGoogle Scholar
  132. 132.
    K. V. Koltover, in: Advances in Materials Science Research, 1, M. C. Wythers (ed.), Nova Science Publishers, New York (2012), pp. 259 – 275.Google Scholar
  133. 133.
    S. Chakrabarty, S. Choudhary, A. Doshi, et al., Adv. Synth. Catal., 356(10), 2135 – 2196 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    A. A. Popov, S. Yang, and L. Dunsch, Chem. Rev., 113(8), 5989 – 6113 (2013).CrossRefPubMedGoogle Scholar
  135. 135.
    W. Luther and A. Zweck (eds.), Safety Aspects of Engineered Nanomaterials, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2013), p. 385.Google Scholar
  136. 136.
    V. Rao, Appl. Biosaf., 19(1), 11 – 19 (2014).CrossRefGoogle Scholar
  137. 137.
    B. Fadeel (ed.), Handbook of Safety Assessment of Nanomaterials: From Toxicological Testing to Personalized Medicine, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2015).Google Scholar
  138. 138.
    V. Srivastava, D. Gusain, and Y. C. Sharma, Ind. Eng. Chem. Res., 54(24), 6209 – 6233 (2015).CrossRefGoogle Scholar
  139. 139.
    K. Bhattacharya, S. P. Mukherjee, A. Gallud, et al., Nanomedicine (N. Y., NY, U. S.), 12(2), 333 – 351 (2016).Google Scholar
  140. 140.
    Z. Li, Z. Liu, H. Sun, and C. Gao, Chem. Rev., 115, No. 15, 7046 – 7117 (2015).CrossRefPubMedGoogle Scholar
  141. 141.
    A. Bhandari, A. N. Naik, and S. Lewis, Syst. Rev. Pharm., 4(1), 20 – 25 (2013).CrossRefGoogle Scholar
  142. 142.
    I. F. Uchegbu and A. Siew, J. Pharm. Sci., 102(2), 305 – 310 (2013).CrossRefPubMedGoogle Scholar
  143. 143.
    J. J. Torrado, D. R. Serrano, and I. F. Uchegbu, Ther. Delivery, 4(1), 9 – 12 (2013).CrossRefGoogle Scholar
  144. 144.
    D. R. Serrano, M. P. Ballesteros, A. G. Schatzlein, et al., Pharm. Nanotechnol., 1(4), 250 – 258 (2013).CrossRefGoogle Scholar
  145. 145.
    M. A. Bianco, M. Gallarate, M. Trotta, and L. Battaglia, J. Drug Delivery Sci. Technol., 20(3), 187 – 191 (2010).CrossRefGoogle Scholar
  146. 146.
    N. Xu, J. Gu, Y. Zhu, et al., Int. J. Nanomed., 6, 905 – 913 (2011).CrossRefGoogle Scholar
  147. 147.
    C. D. Rodrigues, D. M. Casa, L. F. Dalmolin, et al., Curr. Nanosci., 29(5), 594 – 598 (2013).CrossRefGoogle Scholar
  148. 148.
    N. Pippa, M. Mariaki, S. Pispas, and C. Demetzos, Int. J. Pharm., 473(1–2), 80 – 86 (2014).CrossRefPubMedGoogle Scholar
  149. 149.
    K. L. Nagarsekar, C. N. Galdhar, R. V. Gaikwad, et al., Drug Delivery Lett., 4, No. 3 208 – 220 (2014).CrossRefGoogle Scholar
  150. 150.
    D. M. Casa, T. C. M. M. Carraro, L. E. Alves de Camargo, et al., J. Nanosci. Nanotechnol., 15(1), 848 – 854 (2015).CrossRefPubMedGoogle Scholar
  151. 151.
    A. C. O. Souza, A. L. Nascimento, N. M. Vasconcelos, et al., Eur. J. Med. Chem., 95, 267 – 276 (2015).CrossRefPubMedGoogle Scholar
  152. 152.
    X. Tang, R. Jiao, C. Xie, et al., Int. J. Clin. Exp. Med., 8(4), 5150 – 5162 (2015).PubMedPubMedCentralGoogle Scholar
  153. 153.
    A. Ahmad, Y. Wei, F. Syed, et al., Microb. Pathog., 99, 271 – 281 (2016).CrossRefPubMedGoogle Scholar
  154. 154.
    T. C. M. M. Carraro, N. M. Khalil, and R. M. Mainardes, Pharm. Dev. Technol., 21(2), 140 – 146 (2016).CrossRefPubMedGoogle Scholar
  155. 155.
    D. Butani, C. Yewale, and A. Misra, Colloids Surf., B, 139, 17 – 24 (2016).CrossRefGoogle Scholar
  156. 156.
    K. Tutai, R. Szlazak, K. Szalapata, et al., Nanomedicine (N. Y., NY, U. S.) (Nanotechnol. Biol. Med.), 12(4), 1095 – 1103 (2016).CrossRefGoogle Scholar
  157. 157.
    M. Karimi, N. Solati, A. Ghasemi, et al., Expert Opin. Drug Delivery, 12(7), 1089 – 1105 (2015).CrossRefGoogle Scholar
  158. 158.
    X. Tang, Y. Liang, Y. Zhu, et al., Int. J. Nanomed., 10, 6227 – 6241 (2015).CrossRefGoogle Scholar
  159. 159.
    D. M. Casa, T. K. Karam, A. C. S. Alves, et al., J. Nanosci. Nanotechnol., 15(2), 10183 – 10188 (2015).CrossRefPubMedGoogle Scholar
  160. 160.
    I. Javed, S. Z. Hussein, I. Ullah, et al., J. Mater. Chem. B, 3(42), 8359 – 8365 (2015).CrossRefGoogle Scholar
  161. 161.
    X. Tang, J. Dai, J. Xie, et al., Nanoscale Res. Lett., 10(1), 1 – 11 (2015).CrossRefGoogle Scholar
  162. 162.
    Q. Zia, A. A. Khan, Z. Swaleha, and M. Owais, Int. J. Nanomed., 10, 1769 – 1790 (2015).Google Scholar
  163. 163.
    K. Shirkhani, I. Teo, D. Armstrong-James, and S. Shaunak, Nanomedicine (N. Y., NY, U. S.), 11(5), 1217 – 1226 (2015).Google Scholar
  164. 164.
    D. R. Serrano, A. Lalatsa, M. A. Dea-Ayuela, et al., Mol. Pharm., 12(2), 420 – 431 (2015).CrossRefPubMedGoogle Scholar
  165. 165.
    R. Khalil, M. Kassem, A. A. Elbary, et al., Int. J. Pharm. Sci. Res., 4(6), 2292 – 2300 (2013).Google Scholar
  166. 166.
    A. Melkoumov, M. Goupil, F. Louhichi, et al., J. Antimicrob. Chemother, 68(9), 2099 – 2105 (2013).CrossRefPubMedGoogle Scholar
  167. 167.
    G. Badea, A. G. Bors, I. Lacatusu, et al., C. R. Chim., 18(6), 668 – 677 (2015).CrossRefGoogle Scholar
  168. 168.
    C. P. Reis, L. V. Roque, M. Babtista, and P. Rijo, Pharm. Dev. Technol., 21(3), 282 – 287 (2016).CrossRefGoogle Scholar
  169. 169.
    M. Mobasheri, H. Attar, A. M. R. Sorkhabadi, et al., Molecules, 21(1), 1 – 26 (2016).Google Scholar
  170. 170.
    K. Niemirowicz, B. Durnas, G. Tokajur, et al., Nanomedicine (N. Y., NY, U. S.) (Nanotechnol., Biol. Med.), 12(4), 2395 – 2404 (2016).CrossRefGoogle Scholar
  171. 171.
    A. A. Kassem, A. M. Mohsen, R. S. Ahmed, and T. M. Essam, J. Mol. Liq., 218, 219 – 232 (2016).CrossRefGoogle Scholar
  172. 172.
    C. Bouaoud, S. Xu, E. Mendes, et al., J. Appl. Polym. Sci., 133(31), 1 – 10 (2016).CrossRefGoogle Scholar
  173. 173.
    H. Chandasana, Y. D. Prasad, Y. S. Chhonker, et al., Int. J. Pharm., 477(1–2), 317 – 325 (2014).CrossRefPubMedGoogle Scholar
  174. 174.
    V. V. Belakhov, A. V. Garabadzhiu, and V. A. Kolodyaznaya, in: Progress in Medical Mycology [in Russian], Proceedings of the Third International Mycological Forum, 14, Izd. National Academy of Mycology, Moscow (2015), pp. 334 – 337.Google Scholar
  175. 175.
    N. Y. Villa, P. Moussatche, S. G. Chamberlin, et al., J. Mol. Evol., 73(3–4), 134 – 152 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    M. S. A. Khan and I. Ahmad, Appl. Microbiol. Biotechnol. 90(3), 1083 – 1094 (2011).CrossRefPubMedGoogle Scholar
  177. 177.
    A. Devprakash, P. Singh, K. K. Srinvasan, et al., J. Pharm. Res. Opin., 1(3), 85 – 88 (2011).Google Scholar
  178. 178.
    I. V. Ene, C. J. Heilmann, J. Clemens, et al., Proteomics, 12(21), 3164 – 3179 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    N. P. Elinov, Probl. Med. Mikol., 6(4), 3 – 8 (2004).Google Scholar
  180. 180.
    N. V. Beloborodova and T. Yu. Vostrikova, Klin. Mikrobiol. Antimikrob. Khimioter., 11(1), 22 – 30 (2009).Google Scholar
  181. 181.
    L. V. Ivanova, E. P. Barantsevich, and E. V. Shlyakhto, Probl. Med. Mikol., 13(1), 14 – 17 (2011).Google Scholar
  182. 182.
    A. B. Yakovlev, Mycosporia trichophytia Favus, OOO Novik, Moscow (2013).Google Scholar
  183. 183.
    D. Sanglard and T. C. White, in: Molecular Principles of Fungal Pathogenesis, Chap, 14, J. Heitman (ed.), American Society for Microbiology, Washington (2006), pp. 197 – 212.Google Scholar
  184. 184.
    I. Leven-Reisman, I. Ronin, O. Gefen, et al., Science, 355(6327), 826 – 830 (2017).CrossRefGoogle Scholar
  185. 185.
    Z. A. Kanafani and J. R. Perfect, Clin. Infect. Dis., 46, 120 – 128 (2008).CrossRefPubMedGoogle Scholar
  186. 186.
    K. W. Gammelsrud, B. L. Lindstad, and P. Gaustad, Med. Mycol., 50(6), 619 – 625 (2012).CrossRefPubMedGoogle Scholar
  187. 187.
    D. Sanglard, A. Coste, and S. Ferrari, FEMS Yeast Res., 9(7), 1029 – 1050 (2009).CrossRefPubMedGoogle Scholar
  188. 188.
    K. A. Vinogradova, V. G. Bulgakova, A. N. Polin, and P. A. Kozhevin, Antibiot. Khimioter., 58(5–6), 38 – 48 (2013).PubMedGoogle Scholar
  189. 189.
    M. Razzaghi-Abyaneh, M. Shams-Ghahfarokhi, and M. Rai (eds.), Medical Mycology: Current Trends and Future Prospects, CRC Press, Boca Raton, FL, USA (2015).Google Scholar
  190. 190.
    C. M. Hull, N. J. Purdy, and S. C. Moody, Future Microbiol., 9(3), 307 – 325 (2014).CrossRefPubMedGoogle Scholar
  191. 191.
    A. M. Borman, R. Petch, C. J. Linton, M. D. Palmer, et al., J. Clin. Microbiol., 46(3), 933 – 938 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    A. Espinel-Ingroff, E. Jonhson, H. Hockey, and P. Troke, J. Antimicrob. Chemother, 61(3), 616 – 620 (2008).CrossRefPubMedGoogle Scholar
  193. 193.
    S. Sanchez and A. L. Demain (eds.), Antibiotics: Current Innovations and Future Trends, Caister Academic Press, Poole, UK (2015).Google Scholar
  194. 194.
    J. H. Shin, M.-N. Kim, S. J. Sook, et al., J. Clin. Microbiol., 50(6), 1852 – 1855 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    A. Vartak, V. Mutalik, R. R. Parab, et al., Lett. Appl. Microbiol., 58(6), 591 – 596 (2014).CrossRefPubMedGoogle Scholar
  196. 196.
    M. M. Tawfick and A. S. Gad, Am. J. Drug Discovery Dev., 4(1), 32 – 40 (2014).CrossRefGoogle Scholar
  197. 197.
    D. W. Denning and M. J. Bromley, Science, 347(6229), 1414 – 1416 (2015).CrossRefPubMedGoogle Scholar
  198. 198.
    I. P. Kaur and S. Kakkar, Expert Opin. Drug Delivery, 7(11), 1303 – 1327 (2010).CrossRefGoogle Scholar
  199. 199.
    A. M. S. Al-Hatmi, M. Mirabolfathy, F. Hagen, et al., Fungal Biol., 120(2), 265 – 278 (2016).CrossRefPubMedGoogle Scholar
  200. 200.
    S. S. Goncalves, A. C. R. Souza, and A. Chowdhary, Mycoses, 59(4), 198 – 219 (2016).CrossRefPubMedGoogle Scholar
  201. 201.
    M. Slisz, B. Cybulska, J. Grzybowska, et al., J. Antibiot., 60(7), 436 – 446 (2007).CrossRefPubMedGoogle Scholar
  202. 202.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, in: Pharmacy from Century to Century. Proceedings of a Scientific-Practical Conference, Part IV, Izd. SPGKhFA, St. Petersburg (2004), pp. 104 – 109.Google Scholar
  203. 203.
    Yu. D. Shenin and V. V. Belakhov, in: Proceedings of an International Scientific-Practical Conference Dedicated to the 85 th Birthday of the Academy [in Russian], Izd. SPGKhFA, St. Petersburg (2004), pp. 322 – 324.Google Scholar
  204. 204.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, in: Current State and Optimization Pathway for Public Drug Supply. Proceedings of a Russian Scientific-Practical Conference [in Russian], Izd. Perm State Pharmaceutical Academy, Perm (2008), pp. 395 – 397.Google Scholar
  205. 205.
    V. V. Belakhov, Y. D. Shenin, R. A. Araviisky, and B. I. Ionin, in: Strategic Problems of World’s Science, Proceeding of V International Scientific and Practical Conference [in Russian], Nauka i Studia, Przemysl, Poland (2009), pp. 7 – 10.Google Scholar
  206. 206.
    V. V. Belakhov and B. I. Ionin, in: Scientific Search in the Modern World, Proceedings of the IInd International Scientific-Practical Conference [in Russian], Pero, Moscow (2012), pp. 45 – 50.Google Scholar
  207. 207.
    V. V. Belakhov, Y. D. Shenin, A. V. Garabadzhiu, and B. I. Ionin, in: Modern Scientific Achievements, Proceedings of IX International Scientific and Practical Conference, Education and Science, Prague, Czech Republic (2013), pp. 94 – 101.Google Scholar
  208. 208.
    V. A. Kolodyaznaya, Yu. D. Shenin, V. V. Belakhov, and B. I. Ionin, in: Proceedings of 17th European Carbohydrate Symposium, Tel-Aviv, Israel (2013), p. 107.Google Scholar
  209. 209.
    V. V. Belakhov, A. V. Garabadzhiu, and V. A. Kolodyaznaya, in: Proceedings of Annual Meeting of the Israel Society for Microbiology, Ramat-Gan, Israel (2015), p. 45.Google Scholar
  210. 210.
    V. V. Belakhov, T. B. Chistyakova, I. A. Smirnov, and A. V. Garabadzhiu, in: Proceedings of 81st Annual Meeting of the Israel Chemical Society, Tel Aviv, Israel (2016), p. 86.Google Scholar
  211. 211.
    WHO Global Strategy for Containment of Antimicrobial Resistance, World Health Organization (WHO), Geneva, Switzerland (2001).Google Scholar
  212. 212.
    N. V. Vasil’eva, N. N. Klimko, and V. A. Tsinzerling, Vestn. Sankt-Peterburg. Med. Akad. Poslediplom. Obraz., 2(4), 5 – 18 (2010).Google Scholar
  213. 213.
    A. Perrella, C. Esposito, O. Perrella, et al., Infect. Dis., 48(2), 161 – 166 (2016).CrossRefGoogle Scholar
  214. 214.
    O. A. Cornely, S. Arkan-Akdagli, E. Dannaoui, et al., Clin. Microbiol. Infect., 20(3), 5 – 26 (2014).CrossRefPubMedGoogle Scholar
  215. 215.
    F. Fernandez-Silva, J. Capilla, E. Mayayo, et al., Int. J. Antimicrob. Agents, 44(2), 136 – 139 (2014).CrossRefPubMedGoogle Scholar
  216. 216.
    G. Maschmeyer, T. Calandria, N. Singh, et al., Med. Mycol., 47, No. 6, 571 – 583 (2009).CrossRefPubMedGoogle Scholar
  217. 217.
    M. Nucci, K. A. Marr, M. J. G. T. Vehreschild, et al., Clin. Microbiol. Infect., 20(6), 580 – 585 (2014).CrossRefPubMedGoogle Scholar
  218. 218.
    A. Kumar, R. Babu, S. Bijulal, et al., J. Clin. Microbiol., 52(11), 4094 – 4099 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    A. H. Groll and T. J. Walsh, in: Aspergillus fumigatus and Aspergillosis, Chap. 30, W. J. Steibach (ed.), American Society for Microbiology, Washington (2009), pp. 391 – 415.Google Scholar
  220. 220.
    D. Andes, A. Pascual, and O. Marchetti, Antimicrob. Agents Chemother., 53(1), 24 – 34 (2009).CrossRefPubMedGoogle Scholar
  221. 221.
    D. P. Kontoyiannis, Am. J. Med., 12(1), S25 – S38 (2012).CrossRefGoogle Scholar
  222. 222.
    C. Kobyashi, T. Hanadate, T. Niwa, et al., J. Infect. Chemother., 21(6), 438 – 443 (2015).CrossRefGoogle Scholar
  223. 223.
    M. Blatzer, E. Jukic, W. Posch, et al., Antioxid. Redox Signaling, 23(18), 1424 – 1438 (2015).CrossRefGoogle Scholar
  224. 224.
    S. Cordoba, M. G. Isla, W. Szusz, et al., Mycoses, 59(6), 351 – 356 (2016).CrossRefPubMedGoogle Scholar
  225. 225.
    C. Coelho and A. Casadevall, Cell. Microbiol., 18(6), 792 – 799 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    T. N. Doan, C. M. Kirkpatrick, P. Walker, et al., J. Antimicrob. Chemother., 71(2), 497 – 505 (2016).CrossRefPubMedGoogle Scholar
  227. 227.
    A. L. Leal, J. Faganello, A. M. Fuentefria, et al., Mycopathologia, 166(2), 71 – 75 (2008).CrossRefPubMedGoogle Scholar
  228. 228.
    A. Chakrabarti, S. S. Chatterjee, and M. R. Shivaprakash, Jpn. J. Med. Mycol., 49(3), 165 – 172 (2008).CrossRefGoogle Scholar
  229. 229.
    B. P. Mathew and M. Nath, ChemMedChem., 4(3), 310 – 323 (2009).CrossRefPubMedGoogle Scholar
  230. 230.
    M. S. Ferreira and A. S. Borges, Rev. Soc. Bras. Med. Trop., 42(2), 192 – 198 (2009).CrossRefPubMedGoogle Scholar
  231. 231.
    D. F. S. Freitas, H. B. de Siqueira, A. S. F. do Valle, et al., Med. Mycol., 50(2), 170 – 178 (2012).CrossRefPubMedGoogle Scholar
  232. 232.
    G. P. Bisson, M. Molefi, S. Bellamy, et al., Clin. Infect. Dis., 56(8), 1165 – 1173 (2013).CrossRefPubMedGoogle Scholar
  233. 233.
    J. Manoj, J. Priyanka, V. Shinde, et al., Clin. Pharmacol. Drug Dev., 2(1), 48 – 52 (2013).CrossRefGoogle Scholar
  234. 234.
    R. K. Vadlapatla, M. Patel, D. K. Paturi, et al., Expert Opin. Drug Metab. Toxicol., 10(4), 561 – 580 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    UNAIDS, WHO, AIDS Epidemic Update: December 2000, Joint United Nations Program on HIV / AIDS, Geneva (2000).Google Scholar
  236. 236.
    N. N. Klimko, Mycoses: Diagnosis and Treatment: Guide for Physicians [in Russian], Vi Dzhi Group, Moscow (2008).Google Scholar
  237. 237.
    N. P. Elinov, N. V. Vasil’eva, A. A. Stepanova, and G. A. Chilina, Candida. Candidiasis. Laboratory Diagnosis [in Russian], KOSTA, St. Petersburg (2010).Google Scholar
  238. 238.
    N. P. Elinov, Probl. Med. Mikol., 12(3), 3 – 9 (2010).Google Scholar
  239. 239.
    C. d’Enfert and B. Hube (eds.), Candida: Comparative and Functional Genomics, Caister Academic Press, Poole, UK (2007).Google Scholar
  240. 240.
    M. Corti, M. Priarone, J. Castrelo, et al., Rev. Soc. Bras. Med. Trop., 47(4), 524 – 527 (2014).CrossRefPubMedGoogle Scholar
  241. 241.
    J. L. A. Rabjohns, Y.-D. Park, J. Dehdashti, et al., J. Biomol. Screening, 19(2), 270 – 277 (2014).CrossRefGoogle Scholar
  242. 242.
    D. R. Boulware, D. B. Meya, C. Muzoora, et al., N. Eng. J. Med., 370(26), 2487 – 2498 (2014).CrossRefGoogle Scholar
  243. 243.
    S. Anil, M. Hashem, S. Vellappally, et al., Mycopathologia, 178(3–4), 207 – 215 (2014).CrossRefPubMedGoogle Scholar
  244. 244.
    K. Kumari, A. Kumar, and P. C. Sharma, Int. J. Pharm. Sci. Res., 5(2), 532 – 547 (2014).Google Scholar
  245. 245.
    A. V. Veselov, Klin. Mikrobiol. Antimicrob. Khimioter., 10(4), 292 – 304 (2008).Google Scholar
  246. 246.
    B. L. Yesudhason and K. Mohanram, J. Clin. Diagn. Res., 9, No. 7, DC14-DC16 (2015).PubMedPubMedCentralGoogle Scholar
  247. 247.
    T. K. Ngouana, D. Krasteva, P. Drakulovski, et al., Mycoses, 58(1), 33 – 39 (2015).CrossRefPubMedGoogle Scholar
  248. 248.
    S. Cordoba, W. Vivot, W. Szusz, et al., Mycopathologia, 179(5–6), 359 – 371 (2015).CrossRefPubMedGoogle Scholar
  249. 249.
    B. P. Morales, L. Trilles, A. L. Bertho, et al., Mycoses, 58, No. 5, 273 – 279 (2015).CrossRefPubMedGoogle Scholar
  250. 250.
    D. J. Krysan, Fungal Genet. Biol., 78, 93 – 98 (2015).CrossRefPubMedGoogle Scholar
  251. 251.
    G. L. Lee, K. L. Woods, L. Clark, et al., AIDS Res. Hum. Retroviruses, 31(9), 889 – 892 (2015).CrossRefPubMedGoogle Scholar
  252. 252.
    T. R. Rogers, J. Antimicrob. Chemother., 61(1), 35 – 39 (2008).CrossRefGoogle Scholar
  253. 253.
    R. D. Nenoff, C. Kruger, H. Grob, et al., Hautarzt: Zeitschrift fur Dematologie, Venerologie, Verwandte Gebiete, 66(7), 522 – 532 (2015).CrossRefGoogle Scholar
  254. 254.
    V. V. Belakhov, A. V. Garabadzhiu, V. A. Kolodyaznaya, et al., in: Innovation from Discovery to Application, Proceeding of 250th National Meeting of American Chemical Society (ACS), MEDI 60, ACS, Boston, MA, USA (2015).Google Scholar
  255. 255.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, in: Theoretical and Practical Problems in Development of Modern Science, Proceedings of the First International Scientific-Practical Conference [in Russian], Pero, Moscow (2013), pp. 12 – 16.Google Scholar
  256. 256.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, Khim. Prom-st., 90(3), 128 – 132 (2013).Google Scholar
  257. 257.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, in: Development Prospects for Scientific Research in the 21 st Century, Proceedings of the First International Scientific-Practical Conference [in Russian], Pero, Moscow (2013), pp. 33 – 38.Google Scholar
  258. 258.
    V. V. Belakhov, Khim. Prom-st., 91(2), 104 – 108 (2014).Google Scholar
  259. 259.
    V. V. Belakhov, A. V. Garabadzhiu, and V. A. Kolodyaznaya, Bull. S.-Petersb. Inst. Technol., No. 30, 31 – 41 (2015).Google Scholar
  260. 260.
    G. Medoff, J. Brajtburg, and G. S. Kobayashi, Annu. Rev. Pharmacol. Toxicol., 23, 303 – 330 (1983).CrossRefPubMedGoogle Scholar
  261. 261.
    D. Ellis, J. Antimicrob. Chemother., 49(S1), 7 – 10 (2002).CrossRefPubMedGoogle Scholar
  262. 262.
    F. C. Odds, A. J. P. Brown, and N. A. R. Gow, Trends Microbiol., 11(6), 272 – 279 (2003).CrossRefPubMedGoogle Scholar
  263. 263.
    M. Baginski, K. Sternal, J. Czub, and E. Borowski, Acta Biochim. Pol., 52(3), 655 – 658 (2005).PubMedGoogle Scholar
  264. 264.
    J. Czub and M. Baginski, J. Phys. Chem., 110, No. 33, 16743 – 16753 (2006).CrossRefGoogle Scholar
  265. 265.
    M. Baginski, B. Cybulska, and W. I. Gruszecki, in: Advances in Planar Lipid Bilayers and Liposomes, 3, Chap. 9, A. L. Liu (ed.), Elsevier, Oxford, UK (2006), pp. 269 – 329.Google Scholar
  266. 266.
    A. A. Samedova and Kh. M. Kasumov, Antibiot. Khimioter., 54(11–12), 44 – 52 (2009).PubMedGoogle Scholar
  267. 267.
    Kh. M. Kasumov, Structure and Membrane Function of Polyene Macrolide Antibiotics [in Russian], Nauka, Moscow (2009).Google Scholar
  268. 268.
    K. Hac-Wydro and P. Dynarowicz-Latka, Colloids Surf., B, 53(1), 64 – 71 (2006).CrossRefGoogle Scholar
  269. 269.
    D. M. Kaminski, Eur. Biophys. J., 43(10–11), 453 – 467 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    T. Yamamoto, Y. Umezawa, H. Tsuchikawa, et al., Bioorg. Med. Chem., 23(17), 5782 – 5788 (2015).CrossRefPubMedGoogle Scholar
  271. 271.
    P. Kovacic and A. Cooksy, MedChemComm, 3(3), 274 – 280 (2012).CrossRefGoogle Scholar
  272. 272.
    Y. Nakagawa, Y. Umegawa, N. Matsushita, et al., Biochemistry, 55(24), 3392 – 3402 (2016).CrossRefPubMedGoogle Scholar
  273. 273.
    M. N. Preobrazhenskaya, E. N. Olsufyeva, S. E. Solovieva, et al., J. Med. Chem., 52(1), 189 – 196 (2009).CrossRefPubMedGoogle Scholar
  274. 274.
    B. Trygve, S. Havard, K. F. Degnes, et al., Appl. Environ. Microbiol., 77(18), 6636 – 6643 (2011).CrossRefGoogle Scholar
  275. 275.
    A. N. Tevyashova, E. N. Olsufyeva, S. E. Solovieva, et al., Antimicrob. Agents Chemother., 57(8), 3815 – 3822 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th Ed., Pearson Education Inc., Boston, USA (2009).Google Scholar
  277. 277.
    D. L. Poole and A. K. Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, New York (2010).CrossRefGoogle Scholar
  278. 278.
    P. Ponce, A. M. Gutierrez, and J. Rodriguez (eds.), New Applications of Artificial Intelligence, InTech, Rijeka, Croatia (2016).Google Scholar
  279. 279.
    S. Rassel and P. Norvig, Artificial Intelligence. Modern Approach [in Russian], Vil?yams, Moscow (2015).Google Scholar
  280. 280.
    I. G. Sidorkina, Artificial Intelligence Systems [in Russian], KnoRus, Moscow (2011).Google Scholar
  281. 281.
    V. K. Finn, Artificial Intelligence. Methodology of Application and Philosophy [in Russian], Krasand, Moscow (2011).Google Scholar
  282. 282.
    I. E. Bulakh, Yu. E. Lyakh, V. P. Martsenyuk, and I. I. Khaimzon, Medical Informatics [in Russian], Meditsina, Moscow (2012), 426 pp.Google Scholar
  283. 283.
    L. S. Bolotova, Artificial Intelligence Systems. Knowledge- Based Models and Technologies [in Russian], Finansy i Statistika, Moscow (2012).Google Scholar
  284. 284.
    I. P. Korolyuk, Medical Informatics, OOO Ofort, Samara (2012).Google Scholar
  285. 285.
    B. A. Kobrinskii and T. V. Zarubina, Medical Informatics, Akademiya, Moscow (2013).Google Scholar
  286. 286.
    V. P. Omel’chenko and A. A. Demidova, Medical Informatics [in Russian], GEOTAR-Media, Moscow (2016).Google Scholar
  287. 287.
    P. P. Zotov, I. S. Kritsul, and I. M. Mikhalevich, Vrach Inf. Tekhnol., No. 1, 48 – 56 (2014).Google Scholar
  288. 288.
    M. A. Taranik and G. D. Kopanitsa, Vrach Inf. Tekhnol., No. 3, 6 – 12 (2014).Google Scholar
  289. 289.
    I. P. Lukashevich, K. V. Stepanyan, A. K. Popov, and R. Sh. Balugyan, Vrach Inf. Tekhnol., No. 2, 6 – 11 (2015).Google Scholar
  290. 290.
    B. A. Korbinskii, in: Proceedings of the 15 th National Conference on Artificial Intelligence with International Participation [in Russian], Vol. 2, Universum, Smolensk (2016), pp. 259 – 264.Google Scholar
  291. 291.
    T. B. Chistyakova, Yu. I. Shlyago, I. V. Novozhilova, and N. V. Mal’tseva, Intelligent Systems for Technology Design, Control and Training in Multi-facetted Production of Granulated Porous Materials from Disperse Particles, Ser.: Information Technology in the Chemical Industry [in Russian], Izd. SPbGTI(TU), St. Petersburg (2012).Google Scholar
  292. 292.
    T. B. Chistyakova, I. A. Smirnov, and V. V. Belakhov, in: Mathematical Methods in Engineering and Technology (MMTT-29), Collection of Works of the XXIXth International Scientific Conference, Saratov State Technical University [in Russian], St. Petersburg (2016), pp. 173 – 176.Google Scholar
  293. 293.
    V. V. Belakhov, A. V. Garabadzhiu, T. B. Chistyakova, et al., in: Proceedings of the 82 nd Annual Meeting of the Israel Chemical Society, Tel-Aviv, Israel (2017), p. 107.Google Scholar
  294. 294.
    V. V. Belakhov, T. B. Chistyakova, A. V. Garabadzhiu, et al., in: Modern Mycology in Russia, Proceedings of the IVth Convention of Mycologists in Russia [in Russian], XVI, National Academy of Mycology, Moscow (2017), pp. 214 – 216.Google Scholar
  295. 295.
    T. B Chistyakova, R. V. Makaruk, E. E. Musayev, and V. V. Belakhov, in: Proceedings of the XXth International Conference on Soft Computing and Measurements, St. Petersburg Electrotechnical University, St. Petersburg (2017), pp. 516 – 518.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Belakhov
    • 1
    Email author
  • A. V. Garabadzhiu
    • 2
  • T. B. Chistyakova
    • 2
  1. 1.Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Laboratory of Molecular PharmacologySt. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations