Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 11, pp 879–884 | Cite as

Chemical Enhancers or Transcutaneous Conductors: Transcutol

  • O. G. StrusovskayaEmail author
  • S. V. Poroiskii
  • A. G. Strusovskaya
MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION

The concept of enhancers or transcutaneous conductors and their classification and mechanism of action are discussed. Special attention is paid to transcutol, a conductor with pronounced solubilizing and penetrating properties that facilitates the accumulation of locally applied medicines in the skin lipid layer without perturbing its structure. The transcutaneous action effectiveness of chemical enhancers is shown to depend on not only the structure and concentration but also the physicochemical characteristics of the penetrating drugs. Diffusional transport in the stratum corneum and the ability to monitor the occurring processes can be used to optimize the design of drugs for transcutaneous targeted delivery.

Keywords

enhancer mechanism of action transcutol 

References

  1. 1.
    R. L. Wilbur, The Difference Between Topical and Transdermal Medications, Gensco Pharma, Miami (2017).Google Scholar
  2. 2.
    L. N. Carpentieri-Rodrigues, J. M. Zanluchi, and I. H. Grebogi, Drug Delivery, 23(2), 564 – 578 (2016).Google Scholar
  3. 3.
    H. Marwah, T. Garg, A. K. Goyal, and G. Rath, Drug Delivery, 23(2), 564 – 578 (2016).Google Scholar
  4. 4.
    P. Karande, A. Jain, K. Ergun, and V. Kispersky, Proc. Natl. Acad. Sci. USA, 102(13), 4688 – 4693 (2005).Google Scholar
  5. 5.
    Q. D. Pha, S. Bjorklund, J. Engblom, et al., J. Controlled Release, 232, 175 – 187 (2016).Google Scholar
  6. 6.
    A. C. Williams and B. W. Barry, Adv. Drug Delivery Rev., 56(5), 603 – 618 (2004).Google Scholar
  7. 7.
    Y. Chen, P. Quan, X. Liu, et al., Asian J. Pharm. Sci., 9(2), 51 – 64 (2014).Google Scholar
  8. 8.
    M. Aqil, A. Ahad, Y. Sultana, and A. Ali, Drug Discovery Today, 12(23 – 24), 1061 – 1067 (2007).Google Scholar
  9. 9.
    B. Sapra, S. Jain, and A. K. Tiwary, AAPS J., 10(1), 120 (2008).Google Scholar
  10. 10.
    C. Amrish, and S. P. Kumar, Yakugaku Zasshi, 129(3), 373 – 379 (2009).Google Scholar
  11. 11.
    M. K. Das, A. Bhattacharya, and S. K. Ghosal, Drug Delivery, 13(6), 425 – 431 (2006).Google Scholar
  12. 12.
    A. Hussain, G. M. Khan, A. Wahab, and M. Akhlaq, Int. J. Basic Med. Sci. Pharm., 4(1), (2014); ISSN: 2049 – 4963.Google Scholar
  13. 13.
    R. Rajan and D. T. Vasudevan, J. Adv. Pharm. Technol. Res., 3(2), 112 – 116 (2012).Google Scholar
  14. 14.
    H. Trommer and R. H. H. Neubert, Skin Pharmacol. Physiol., 19, 106 – 121 (2006).Google Scholar
  15. 15.
    N. Dragicevic, J. P. Atkinson, and H. I. Maibach, in: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, N. Dragicevic and H. Maibach (eds.), Springer, Berlin, Heidelberg (2015), pp. 11 – 27.Google Scholar
  16. 16.
    V. Mathur, Y. Satrawala, and M. S. Rajput, Asian J. Pharm., 4(3), 173 – 183 (2010).Google Scholar
  17. 17.
    K Marren, Phys. Sportsmed., 39(3), 75 – 82 (2011).Google Scholar
  18. 18.
    T. G. Khonina, O. N. Chupakhin, L. P. Larionov, et al., Khim.-farm. Zh., 43(2), 26 – 32 (2009).Google Scholar
  19. 19.
    I. B. Pathan and M. Setty, Trop. J. Pharm. Res., 8(2), 173 – 179 (2009).Google Scholar
  20. 20.
    T. G. Boyakovskaya, Author’s Abstract of a Candidate Dissertation in Medical Sciences, Chelyabinsk (2006).Google Scholar
  21. 21.
    P. J. Rossky, Proc. Natl. Acad. Sci. USA, 105(44), 16825 – 16826 (2008).Google Scholar
  22. 22.
    A. S. Williams, in: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, N. Dragicevic and H. Maibach (eds.), Springer, Berlin, Heidelberg (2015), pp. 301 – 308.Google Scholar
  23. 23.
    Yu. A. Makedonova, A. V. Poroiskaya, I. V. Firsova, and S. V. Poroiskii, Parodontologiya, 85(4), 30 – 34 (2017).Google Scholar
  24. 24.
    Yu. A. Makedonova, I. V. Firsova, and S. V. Poroiskii, Stomatologiya, 95(6), 35 – 36 (2016).Google Scholar
  25. 25.
    Yu. A. Makedonova, I. V. Firsova, and S. V. Poroiskii, Paradontologiya, 82(1), 41 – 45 (2017).Google Scholar
  26. 26.
    S. V. Poroiskii, Yu. A. Makedonova, and I. V. Firsova, Vestn. Volgograd. Gos. Med. Univ., No. 3, 84 – 88 (2017).Google Scholar
  27. 27.
    V. V. Povoroznyuk, T. V. Orlik, and S. V. Kozitskaya, Poliklinika, No. 2, 113 – 115 (2017).Google Scholar
  28. 28.
    V. I. Prikhod’ko, Med. Sovetnik. Revmatol., No. 1 (25), 9 – 10 (2015).Google Scholar
  29. 29.
    D. I. Glazyrin, Usp. Sovrem. Estestvozn., No. 5, 60 – 61 (2003).Google Scholar
  30. 30.
    E. V. Prikhod’ko, Poliklinika, No. 5, 71 (2009).Google Scholar
  31. 31.
    N. A. Zabokritskii, Vestn. Bashkir. Univ., 18(3), 730 – 733 (2013).Google Scholar
  32. 32.
    N. A. Zabokritskii and O. V. Kolomiets, Zdorov’e Obraz. XXI Vek., 16(6), 26 – 40 (2014).Google Scholar
  33. 33.
    N. A. Zabokritskii, Zdorov’e Obraz. XXI Vek., 16(4), 269 – 273 (2014).Google Scholar
  34. 34.
    N. A. Zabokritskii, L. P. Larionov, B. G. Yushkov, and A. A. Kiseleva, Ross. Immunol. Zh., 8(3), 680 – 684 (2014).Google Scholar
  35. 35.
    N. A. Zabokritskii, Ross. Immunol. Zh., 11(2), 126 – 129 (2017).Google Scholar
  36. 36.
    D. A. Godwin, N.-H. Kim, and L. A. Felton, Eur. J. Pharm. Biopharm., 53, 23 – 27 (2002).Google Scholar
  37. 37.
    Opinion on Diethylene Glycol Monoethyl Ether (DEGEE), Scientific Committee on Consumer Products, Public Health, Luxembourg (2006), pp. 1 – 27.Google Scholar
  38. 38.
    R. Panchagnula, J. Pharm. Pharmacol., No. 43, 609 – 614 (1991).Google Scholar
  39. 39.
    W. A. Ritchel, R. Panchagnula, K. Stemmer, and M. Ashraf, Skin Pharmacol., No. 4, 235 – 245 (1991).Google Scholar
  40. 40.
    D. W. Sullivan, Jr., S. C. Gad, and M. Julien, Food Chem. Toxicol., No. 72, 40 – 50 (2014).Google Scholar
  41. 41.
    F. Levi-Schaffer, N. Dayan, and E. Touitou, Skin Pharmacol., 9(1), 53 – 59 (1996).Google Scholar
  42. 42.
    P. Mura, M. T. Faucci, G. Bramanti, and P. Corti, Eur. J. Pharm. Sci., 9(4), 365 – 372 (2000).Google Scholar
  43. 43.
    T. Yu. Nagovitsyna, Author’s Abstract of a Candidate Dissertation in Chemical Sciences, Moscow (2015).Google Scholar
  44. 44.
    S. A. Chime, F. C. Kenechukwu, and A. A. Attama, Appl. Nanotech. Drug Delivery, Chap. 3, 77 – 126 (2014).Google Scholar
  45. 45.
    R. Arora, G. Aggarwal, S. L. Harikumar, and K. Kaur, Adv. Pharm., 2014, 1 – 12 (2014).Google Scholar
  46. 46.
    H. O. Ammar, H. A. Salama, M. Ghorab, and A. A. Mahmoud, AAPS PharmSciTech, 10(3), 808 (2009).Google Scholar
  47. 47.
    J. Shokri, S. Azarmi Z. Fasihi, et al., Res. Pharm. Sci., 7(4), 225 – 234 (2012).Google Scholar
  48. 48.
    N. Barakat, E. Fouad, and A. Elmedany, Sci. Pharm., 78(1), 47 – 56 (2010).Google Scholar
  49. 49.
    D. Kumar, M. Aqil, M. Rizwan, et al., Pharmazie, 64(2), 80 – 85 (2009).Google Scholar
  50. 50.
    R. Jain and V. B. Patravale, J. Biomed. Nanotechnol., 5(1), 62 – 68 (2009).Google Scholar
  51. 51.
    R. Censi, V. Martena, E. Hoti, et al., Drug Dev. Ind. Pharm., 38(9), 1128 – 1133 (2012).Google Scholar
  52. 52.
    G. A. Shazly, N. Haq, and F. Shakeel, Pharmazie, 69(5), 335 – 339 (2014).Google Scholar
  53. 53.
    D. W. Osborne, J. Cosmet. Dermatol., No. 10, 324 – 329 (2011).Google Scholar
  54. 54.
    RU Pat. 2,468,794, 2008; Izobret. Polezn. Modeli, No. 34 (2012).Google Scholar
  55. 55.
    RU Pat. 2,311,908, 2002; Izobret. Polezn. Modeli, No. 34 (2007).Google Scholar
  56. 56.
    RU Pat. 2,301,056, 2002; Izobret. Polezn. Modeli, No. 17 (2007).Google Scholar
  57. 57.
    A. V. Nikulin, N. R. Lebedeva, and O. G. Potanina, Zh. Zdorov?e Obraz. XXI Vek., 19(4), 128 – 130 (2017).Google Scholar
  58. 58.
    RU Pat. 2,301679, 2001; Izobret. Polezn. Modeli, No. 18 (2007).Google Scholar
  59. 59.
    V. A. Mal?tseva, D. I. Efimova, E. A. Rud’ko, et al., Ross. Biomed. Zh., 16(4), 939 – 947 (2015).Google Scholar
  60. 60.
    RU Pat. 2,343,915, 2004; Izobret. Polezn. Modeli, No. 2 (2009).Google Scholar
  61. 61.
    RU Pat. 2,296,568, 2005, Apr. 10, 2007; Izobret. Polezn. Modeli, No. 10 (2007).Google Scholar
  62. 62.
    RU Pat. 2,414,910, Mar. 27, 2011; Izobret. Polezn. Modeli, No. 9 (2011).Google Scholar
  63. 63.
    RU Pat. 2,242,974, 1997, Dec. 27, 2004; Izobret. Polezn. Modeli, No. 36 (2004).Google Scholar
  64. 64.
    RU Pat. 2,388,482, 2004; Izobret. Polezn. Modeli, No. 13 (2010).Google Scholar
  65. 65.
    E. V. Prikhod’ko, Poliklinika, No. 3 – 4, 75 – 77 (2013).Google Scholar
  66. 66.
    Z. Liu, J. Li, S. Nie, et al., J. Pharm. Pharmacol., 58(1), 45 – 50 (2006).Google Scholar
  67. 67.
    D. Prasanthi and P. K. Lakshmi, ISRN Pharm., 2012, 1 – 8 (2012).Google Scholar
  68. 68.
    L. T. Fox, M. Gerber, J. Du Plessis, and J. H. Hamman, Molecules, 16, 10507 – 10540 (2011).Google Scholar
  69. 69.
    N. M. Zadymova, Kolloidn. Zh., 75(5), 543 – 556 (2013).Google Scholar
  70. 70.
    E. G. Kuznetsova, V. A. Ryzhikova, L. A. Salomatina, and V. I. Sevast’yanov, Vestn. Transplantol. Iskusstv. Organov, XVIII(2), 152 – 162 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. G. Strusovskaya
    • 1
    • 2
    Email author
  • S. V. Poroiskii
    • 1
    • 2
  • A. G. Strusovskaya
    • 1
  1. 1.Volgograd State Medical UniversityMinistry of Health of the Russian FederationVolgogradRussia
  2. 2.Volgograd Medical Scientific CenterVolgogradRussia

Personalised recommendations