Pharmaceutical Chemistry Journal

, Volume 52, Issue 1, pp 69–76 | Cite as

Effects of Pharmaceutical Preparations on the Rate of Degradation of Poly(Lactide-Co-Glycolide) Scaffolds

  • E. N. Antonov
  • A. G. Dunaev
  • S. A. Minaeva
  • L. I. Krotova
  • V. K. Popov
DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • 3 Downloads

The effects of acetylsalicylic acid, ibuprofen, 6-methyluracil, and chondroitin sulfate impregnated in poly-(lactide-co-glycolide) scaffolds of different chemical compositions and molecular weights using supercritical carbon dioxide on the processes of scaffold degradation in phosphate-buffered saline pH 7.4 were studied and the rate constants of these processes were determined. Incorporation of acetylsalicylic acid and ibuprofen into poly(lactide-co-glycolide) scaffolds was found to produce significant increases in the rate of hydrolysis of the polymer base, while the presence of methyluracil and chondroitin sulfate had virtually no effect.

Keywords

acetylsalicylic acid ibuprofen 6-methyluracil chondroitin sulfate poly(lactide-co-glycolides) scaffolds supercritical carbon dioxide hydrolysis constants 

References

  1. 1.
    P. A. Gunatillake and R. Adhikari, Eur. Cells Mater., 5, 1 – 16 (2003).CrossRefGoogle Scholar
  2. 2.
    J. Tsung and D. J. Burgess, in: Fundamentals and Appl. of Controlled Release Drug Delivery, M. Rathbone, R. Siegel, and J. Shipmann (eds.), CRS Press, Springer, Part 2 (2012), pp. 107 – 123.Google Scholar
  3. 3.
    S. A. Kedik, E. S. Zhavoronok, I. P. Sedishev, et al., Razrab. Registrats. Lek. Sred., 3, 18 – 35 (2013).Google Scholar
  4. 4.
    C. Engineer, J. Parikh, and A. Raval, Trends Biomater. Artif. Organs, 25, 79 – 85 (2011).Google Scholar
  5. 5.
    H. K. Makadia and S. J. Siegel, Polymers, 3, 1377 – 1397 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    J. Siepmann, K. Elkharraz, F. Siepmann, and D. Klose, Biomacromolecules, 6, 2312 – 2319 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    J. Y. Yoo, J. M. Kim, K. S. Seo, et al., Bio-Med. Mater. Engin., 15, 279 – 288 (2015).Google Scholar
  8. 8.
    Y. Cha and C. G. Pitt, J. Control. Rel., 8, 259 – 265 (1988).CrossRefGoogle Scholar
  9. 9.
    A. Frank, S. K. Rath, and S. S. Venkatraman, J. Control. Rel., 102, 333 – 344 (2005).CrossRefGoogle Scholar
  10. 10.
    S. J. Siegel, J. B. Kahn, K. Metzger, K. I. Winey, et al., Eur. J. Pharm. Biopharm., 64, 287 – 293 (2006).CrossRefPubMedGoogle Scholar
  11. 11.
    M. Stevanovic and D. Uskokovic, Cur. Nanoscie., 5, 1 – 14 (2009).CrossRefGoogle Scholar
  12. 12.
    E. K. Alekhin, Sorovskii Obrazovat. Zh., No. 7, 85 – 90 (1999).Google Scholar
  13. 13.
    K. D. Rainsford (ed.), Ibuprofen: Discovery, Development and Therapeutics, Wiley-Blackwell, New Jersey (2015).Google Scholar
  14. 14.
    J. A. Singh, S. Noorbaloochi, R. MacDonald, and L. J. Maxwell, Chondroitin for Osteoarthritis, Cochrane Database of Systematic Reviews, Issue 1 (2015, Art. No. CD005614.Google Scholar
  15. 15.
    A. F. Ismagilova, F. S. Zarudii, and D. N. Lazareva, Antibiot. Khimioter., 43, 24 – 25 (1998).Google Scholar
  16. 16.
    S. M. Howdle, M. S. Watson, M. J. Whitaker, et al., Chem. Commun., 109 – 110 (2001).Google Scholar
  17. 17.
    S. E. Bogorodskii, T. S. Zarkhina, E. V. Kuznetsov, et al., Rus. J. Phys. Chem. B, 8, 924 – 931 (2014).CrossRefGoogle Scholar
  18. 18.
    M. Floren, S. Spilimbergo, A. Motta, and C. Migliaresi, J. Biomed. Mater. Res. Part B: Appl. Biomater., 99B, 338 – 349 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Hakkarainen, A. C. Albertsson, and S. Karlsson, Polym. Degrad. Stab., 52, 283 – 291 (1996).CrossRefGoogle Scholar
  20. 20.
    Y. Cha and C. G. Pitt, Biomaterials, 11, 108 – 112 (1990).CrossRefPubMedGoogle Scholar
  21. 21.
    S. C. J. Loo, C. P. Ooi, S. H. E. Wee, and Y. C. F. Boey, Biomaterials, 26, 2827 – 2833 (2005).CrossRefPubMedGoogle Scholar
  22. 22.
    S. Li, H. Garreau, and M. Vert, J. Mater. Sci. Mater. Med., 1, 131 – 139 (1990).CrossRefGoogle Scholar
  23. 23.
    T. Yoshioka, N. Kawazoe, T. Tateishi, and G. Chen, Biomaterials, 29, 3438 – 3443 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    G. Reich, Drug Develop. Indust. Pharm., 23, 1177 – 1189 (1997).CrossRefGoogle Scholar
  25. 25.
    H. Tsuji, Polymer, 43, 1789 – 1796 (2002).CrossRefGoogle Scholar
  26. 26.
    L. Wu and J. Ding, Biomaterials, 25, 5821 – 5830 (2004).CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Mohammadi and E. Jabbari, Macromol. Theory Simul., 15, 643 – 653 (2006).CrossRefGoogle Scholar
  28. 28.
    X. Chen, C. P. Ooi, and T. H. Lim, J. Biomater. Appl., 20, 287 – 302 (2006).CrossRefPubMedGoogle Scholar
  29. 29.
    B. S. Zolnik and D. J. Burgess, J. Control. Rel., 122, 338 – 344 (2007).CrossRefGoogle Scholar
  30. 30.
    D. Klose F. Siepmann, K. Elkharraz, and J. Siepmann, Int. J. Pharm., 354, 95 – 103 (2008).CrossRefPubMedGoogle Scholar
  31. 31.
    E. N. Antonov, D. V. Butnaru, A. Z. Vinarov, et al., Éksperim. Klin. Farmakol., 78(3), 36 – 39 (2015).Google Scholar
  32. 32.
    L. I. Krotova, E. N. Antonov, S. A. Minaeva, and V. K. Popov, Proceedings, BalticSCF 2015, 14 – 19 September, 2015 [in Russian], Zelenogradsk, Kaliningradskoi District (2015), ST-20.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. N. Antonov
    • 1
  • A. G. Dunaev
    • 1
  • S. A. Minaeva
    • 1
  • L. I. Krotova
    • 1
  • V. K. Popov
    • 1
  1. 1.Institute of Photon Technologies, Crystallography and Photonics Federal Science Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations