Advertisement

Pharmaceutical Chemistry Journal

, Volume 51, Issue 11, pp 985–994 | Cite as

Hampered Binding to Blood Serum Proteins and the Biological Activity of Antimicrobial Peptide Containing N3-(4-Methoxyfumaroyl)-L-2,3-Diaminopropanoic Acid Immobilized on Magnetic Nanoparticles

  • Julia Nowak-JaryEmail author
  • Ewelina Gronczewska
  • Weronika Worobiec
Article
  • 61 Downloads

Peptides containing N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP) are known as antifungal and antibacterial agents. However, FMDP peptides bind to the blood serum proteins in an irreversible way thereby losing their biological activity. In the present work, one of the most potent FMDP peptides, LysNvaFMDP, was immobilized on iron-oxide(II/III) magnetic nanoparticles (MNPs) in order to obtain a potentially more resistant form of this compound capable of binding to proteins. The obtained nanostructures were characterised using FT-IR and DLS techniques. Then, the degree of binding of the immobilized FMDP agent to albumin from bovine pancreas and to the proteins from human blood serum was tested using UV-VIS spectrophotometric method in comparison to the unbound form of this peptide. Microbial growth inhibition tests were also carried out. The form of LysNvaFMDP immobilized on MNPs turned out to have lower affinity to the proteins in comparison to the unbound form and, as a result, it showed a higher antimicrobial activity against Lactobacillus acidophilus ATCC 4356 strain. The immobilized form of FMDP agent is significantly protected from binding to albumin and other blood serum proteins and thus retains its antimicrobial activity. It is possible that such a form of this agent will reach clinics.

Keywords

FMDP peptides antimicrobial agents magnetic nanoparticles albumin blood serum proteins 

References

  1. 1.
    J. W. Payne and M. W. Smith, Adv. Microb. Physiol., 36, 1 – 80 (1994).CrossRefPubMedGoogle Scholar
  2. 2.
    J. M. Becker and F. Naider, in: Peptide-Based Drug Design: Controlling Transport and Metabolism, M. D. Taylor and G. L. Amidon (eds.), ACS, Washington, DC (1995), pp. 369 – 386.Google Scholar
  3. 3.
    J. W. Payne, in: Peptide-Based Drug Design: Controlling Transport and Metabolism, M. D. Taylor and G. L. Amidon (eds.), ACS, Washington, DC (1995), pp. 341 – 367.Google Scholar
  4. 4.
    P. S. Ringrose, in: Transport and Utilization of Amino Acids, Peptides, Proteins and Related Substrates: Microorganisms and Nitrogen Sources, J. W. Payne (ed.), John Wiley & Sons, Chichester (1980), pp. 641 – 657.Google Scholar
  5. 5.
    R. Andruszkiewicz, H. Chmara, S. Milewski, et al., J. Med. Chem., 30(10), 1715 – 1719 (1987).CrossRefPubMedGoogle Scholar
  6. 6.
    R. Andruszkiewicz, S. Milewski, T. Zieniawa, et al., J. Med. Chem., 33(1), 132 – 135 (1990).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Andruszkiewicz, H. Chmara, S. Milewski, et al., Int. J. Peptide Protein. Res., 27(5), 449 – 453 (1986).CrossRefGoogle Scholar
  8. 8.
    S. Milewski, R. Andruszkiewicz, and L. Kasprzak, Antimicrob. Agents Chemother., 35(1), 36 – 43 (1991).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    H. Chmara, R. Andruszkiewicz, and E. Borowski, Biochim. Biophys. Acta, 870 (2), 357 – 366 (1986).CrossRefPubMedGoogle Scholar
  10. 10.
    S. Milewski, H. Chmara, R. Andruszkiewicz, et al., Biochim. Biophys. Acta, 828(3), 247 – 254 (1985).CrossRefPubMedGoogle Scholar
  11. 11.
    S. Milewski, H. Chmara, R. Andruszkiewicz, at al., Drugs Exp. Clin. Res., 14(7), 461 – 465 (1988).Google Scholar
  12. 12.
    S. Milewski, F. Mignini, R. Prasad, et al., Antimicrob. Agents Chemother., 45(1), 223 – 228 (2001).CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Report on the Implementation of Agreement CPBP 04.02 No. 1.4.5, Department of Microbiology, Medical University of Bialystok, Bialystok, Poland (10.10.1987).Google Scholar
  14. 14.
    L. Kasprzak, S. Milewski, and J. Gumieniak, J. Chemother., 4(2), 88 – 94 (1992).CrossRefPubMedGoogle Scholar
  15. 15.
    R. Weissleder, G. Elizondo, G. Wittenber, et al, Radiology, 175(2), 489 – 493 (1990).CrossRefPubMedGoogle Scholar
  16. 16.
    C. C. Berry, A. S. G. Curtis, J. Phys. D: Appl. Phys., 36, R198-R206 (2003).CrossRefGoogle Scholar
  17. 17.
    A. Jordan, R. Scholz, K. Maier-Hauff, et al, J. Magn. Magn. Mater., 225(1 – 2), 118 – 126 (2001).CrossRefGoogle Scholar
  18. 18.
    A. S. Lübbe, C. Alexiou, and C. Bergmann, J. Surg. Res., 95(2), 200 – 206 (2001).CrossRefPubMedGoogle Scholar
  19. 19.
    J. P. Lorand and J. O. Edwards, J. Org. Chem., 24(6), 769 – 774 (1959).CrossRefGoogle Scholar
  20. 20.
    D. G. Hall, Boronic Acids, Wiley-VCH, Weinheim (2005).CrossRefGoogle Scholar
  21. 21.
    M. Benderdour, T. Bui-Van, and A. Dicko, J. Trace Elem. Med. Biol., 12(1), 2 – 7 (1998)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Ma, Y. Zhang, W. Yu, et al., Colloid Surf. A, 212(2 – 3), 219 – 22623 (2003).CrossRefGoogle Scholar
  23. 23.
    X. Shen, X. Fang, Y. Zhou, et al, Chem. Lett., 33(11), 1468 – 1469 (2004).CrossRefGoogle Scholar
  24. 24.
    J. Nowak-Jary, Chem. Pap., 70(5), 658 – 662 (2016).Google Scholar
  25. 25.
    R. Massart, IEEE Trans. Magn., 17(2), 1247 – 1248 (1981).CrossRefGoogle Scholar
  26. 26.
    G. Piotrowski, Sitzungsberichte der Keiserlichen Akademie Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 24, 335 – 337 (1857).Google Scholar
  27. 27.
    H. C. Freeman, J. E. W. L. Smith, and J. C. Taylor, Acta Cryst. C, 14, 407 – 418 (1961).CrossRefGoogle Scholar
  28. 28.
    T.-G. Iversen, T. Skotland, and K. Sandvig, Nano Today, 6(2), 176 – 185 (2011).CrossRefGoogle Scholar
  29. 29.
    L. Shang, K. Nienhaus, and G. U. Nienhaus, J. Nanobiotechnol., 12(5), 1 – 11 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julia Nowak-Jary
    • 1
    Email author
  • Ewelina Gronczewska
    • 1
  • Weronika Worobiec
    • 2
  1. 1.Faculty of Biological SciencesUniversity of Zielona GóraZielona GóraPoland
  2. 2.Innovation Centre: Technologies for Human Health (ICTHH)University of Zielona GóraZielona Góra–Nowy KisielinPoland

Personalised recommendations