Pharmaceutical Chemistry Journal

, Volume 47, Issue 1, pp 44–49 | Cite as

Triterpenes from Ardisia cf. elliptica (subgenus Tinus) limit vascular density and promote von Willebrand factor expression on duck chorioallantoic membrane

  • Dennis D. Raga
  • Annabelle A. Herrera
  • Chien-Chang Shen
  • Consolacion Y. Ragasa
Article

Mixtures of bauerenol (1a), α-amyrin (1b) and β-amyrin (1c) extracted from the leaves of Ardisia cf. elliptica (subgenus Tinus) were tested at ratios of 2 : 2 : 1, 2 : 2 : 3 and 1 : 1 : 1, respectively, for their angio-suppressive effects on duck chorioallantoic membrane (CAM). Amixture with the maximum proportion of bauerenol (2 : 2 : 3) was found to be the most effective in limiting the number of blood vessels appearing in a given chorioallantoic membrane segment in a non-concentration-dependent interaction. All the three ratios of components were found effective in promoting intense expression of the von Willebrand factor (F8), but limited expression of epithelial membrane antigen was observed. Results of the present study indicate that the development of vasculature in duck CAM was limited by high expression of F8 along endothelial surfaces, thus suggesting high impact angio-suppressive effects of substances studied.

Keywords

Ardisia cf. elliptica Myrsinaceae bauerenol α-amyrin β-amyrin angio-suppressive 

References

  1. 1.
    E. D. Merril, An Enumeration of Philippine Flowering Plants, Manila Bureau of Printing, Vol. 3, 256 – 266 (1967).Google Scholar
  2. 2.
    A. H. Roslida and K. H. Kim, Phcog. Mag., 4(16), 69 – 268 (2008).Google Scholar
  3. 3.
    H. Kobayashi and E. De Mejia, J. Ethnopharmacol., 96, 347 – 354 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    X. Chang, W. Li, Z. Jia Z, et al., J. Natur. Prod., 70(2), 179 – 187 (2007).CrossRefGoogle Scholar
  5. 5.
    S. Piacente, P. C. De Tommasi, N. Mahmood, et al., J. Natur. Prod., 59(6), 565 – 569 (1996).CrossRefGoogle Scholar
  6. 6.
    Z. Nikolovska-Coleska, L. Xu, Z. Hu, et al., J. Med. Chem., 47(10), 2430 – 2440 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    F. D. Horgen, H. Guinaudeau, J. M. Pezzuto, et al., J. Natur. Prod., 60(5), 533 – 535 (1997).CrossRefGoogle Scholar
  8. 8.
    M. V. Ramirez-Mares, S. Fatell, S. Villa-Trevino, et al., Toxicol. in Vitro, 13, 889 – 896 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    D. D. Raga, A. A. Herrera, C.-C. Shen, et al., Chin. J. Natur. Med. [in press].Google Scholar
  10. 10.
    C. Y. Ragasa, D. L. Espineli, D. D. Raga, et al., Chem. Natur. Compds. [in press].Google Scholar
  11. 11.
    D. D. Raga, A. B. Alimboyoguen, C.-C. Shen, et al., Philippin. Agric. Sci., 94(2), 103 – 110 (2011).Google Scholar
  12. 12.
    T. Leung, J. M. Miller, K. V. Bilbao, et al., Retina – J. Ret. Vit. Dis., 24(3), 427 – 434 (2004).CrossRefGoogle Scholar
  13. 13.
    A. A. Herrera and E. C. Amor, J. Med. Plant Res., 5, 2637 – 2646 (2011).Google Scholar
  14. 14.
    C. Y. Ragasa, M. R. A. Puno, J. M. A. P. Sengson, et al., Natur. Prod. Res., 23(13), 1252 – 1258 (2009).CrossRefGoogle Scholar
  15. 15.
    M. F. Otuki, J. Ferreira, F. V. Lima, et al., J. Pharmacol. Exp. Therap., 313(1), 310 – 318 (2005).CrossRefGoogle Scholar
  16. 16.
    M. F. Otuki, F. Vieira-Lima, A. Malheiros, et al., Eur. J. Pharmacol., 507(1 – 3):253 – 259 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    F. A. Oliveira, R. C. Lima Jr., W. M. Cordeiro, et al., Pharmacol. Biochem. Behav., 78(4), 719 – 725 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    F. A. Oliveira, M. H. Chaves, F. R. C. Almeida, et al., J. Ethnopharmacol, 98(1 – 2), 103 – 108 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    F. A. Oliveira, C. L. S. Costa, M. H. Chaves, et al., Life Sci., 77, 2942 – 2952 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    R. N. Mbouangouere, P. Tane, D. Ngamga, Res. J. Med. Plants, 1(3),106 – 111 (2007).CrossRefGoogle Scholar
  21. 21.
    E. De Souza, D. de Lira, A. de Quieroz, et al., Mar. Drugs, 7(4) (2009).Google Scholar
  22. 22.
    H. S. J. Smith, J. Support. Oncol., 4(6), 277 – 287 (2006).Google Scholar
  23. 23.
    J. Sawynok, J. Pharmacol. Rev., 55 (1), 1 – 20 (2003).Google Scholar
  24. 24.
    Z. Szekanecz and A. E. Koch, Vasc. Pharmacol., 51, 1 – 7 (2009).CrossRefGoogle Scholar
  25. 25.
    X. W. Bian, J. H. Chen, X. F. Jiang, et al., Int. Immunopharmacol., 4, 1537 – 1547 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    L. Zanetta, S. G. Marcus, J. Vasile, et al., Int. J. Cancer, 85, 282 – 288 (2000).Google Scholar
  27. 27.
    Y. Xie and J. Chen, Circulation, 120, S1054 (2009).Google Scholar
  28. 28.
    J. Huang, R. Roth, J. E. Heuser, and J. E. Sadler, Blood, 113(7), 1589 – 1597 (2009).PubMedCrossRefGoogle Scholar
  29. 29.
    R. D. Starke, F. Ferraro, K. E. Paschalaki, et al., Blood, 117, 1071 – 1080 (2011).PubMedCrossRefGoogle Scholar
  30. 30.
    I. B. Lobov, P. C. Brooks, R. A. Lang, Proc. Natl. Acad. Sci. USA, 99(17), 11205 – 11210 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    S. B. Fox, R. D. Leek, J. Bliss, et al., J. Natl. Cancer Inst., 89(14), 1044 – 1049 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dennis D. Raga
    • 1
    • 2
  • Annabelle A. Herrera
    • 2
  • Chien-Chang Shen
    • 3
  • Consolacion Y. Ragasa
    • 4
  1. 1.Biology Department, School of Science and EngineeringAteneo de Manila UniversityQuezon CityPhilippines
  2. 2.Institute of BiologyUniversity of the PhilippinesQuezon CityPhilippines
  3. 3.National Research Institute of Chinese MedicineTaipeiTaiwan
  4. 4.Chemistry Department and Center for Natural Sciences and Ecological ResearchDe La Salle UniversityManilaPhilippines

Personalised recommendations