Pharmaceutical Chemistry Journal

, Volume 46, Issue 10, pp 612–621

Methods of synthesis and properties of S-substituted 6-thiopurines (Review)

METHODS OF DRUG SYNTHESIS AND DRUG PRODUCTION TECHNOLOGY

Published data on methods of synthesis and properties of 6-alkyl(aralkyl, aryl, hetaryl)thiopurines and their 9-substituted derivatives from 1971 to 2009 are reviewed.

Keywords

S-substituted 6-thiopurines synthesis properties 

References

  1. 1.
    M. D. Mashkovskii, Medicines [in Russian], Novaya Volna, Moscow (2005).Google Scholar
  2. 2.
    M. L. de Lemos, L. Hamata, S. Jennings, et al., J. Oncol. Pharm. Practice, 13(4), 237–240 (2008).CrossRefGoogle Scholar
  3. 3.
    X. Q. Luo, Z. Y. Ke, L. B. Huang, et al., Pediatr. Pulmonol., 4(11), 1067–1071 (2008).CrossRefGoogle Scholar
  4. 4.
    S. Marsh and D. J. Van Booven, Clin. Pharmacol. Ther., 85, 139–141 (2009).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Schmiegelow, M. Heyman, J. Kristinsson, et al., J. Pediatr. Hematol. Oncol., 31, 385–392 (2009).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Madueno and A. J. Vindes, J. Phys. Chem. (B), 1520–6106 (2006).Google Scholar
  7. 7.
    J. P. Podsiadlo, V. A. Sinani, J. Hwan Bahng, et al., Langmuir, 24(2), 568–574 (2008).PubMedCrossRefGoogle Scholar
  8. 8.
    Catalog: Nanoprobes E-News, 9(1), 1–15 (2008).Google Scholar
  9. 9.
    L. Malina, J. Chlumsky, A. Chlumska, and V. Kztek, Z. Hautkr., 58(4), 241–243 (1983).PubMedGoogle Scholar
  10. 10.
    M. Negwer, Organic Chemical Drugs and Their Synonyms, Academie-Verlag, Berlin (1987), Vol. 1, pp. 276, 561.Google Scholar
  11. 11.
    A. Anstey, L. Lennard, S. C. Mayou, et al., J. Royal. Soc. Med., 85, 752–756 (1992).Google Scholar
  12. 12.
    H. Tajiri, T. Tomomasa, A. Yoden, et al., Digestion (Int. J. Gastroenterol.), 77(3–4), 150–154 (2008).Google Scholar
  13. 13.
    B. Bressler and R. Enns, Can. J. Gastroenterol., 22(2), 121–123 (2008).PubMedGoogle Scholar
  14. 14.
    U. Hindrorf, M. Johansson, A. Eriksson, et al., Alimentary Pharmacol. Therapeut., 29, 654–661 (2008).CrossRefGoogle Scholar
  15. 15.
    A. H. Chalmers, T. Gotjamanos, M. M. Rao, et al., J. Surg. Res., 11(6), 284–286 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    L. N. Filitis, Yu. A. Sorkina, G. N. Pershin, et al., Farmakol. Toksikol., No. 6, 708–712 (1971).Google Scholar
  17. 17.
    R. K. Robins, in: Heterocyclic Compounds [in Russian], R. Elderfield (ed.), Mir, Moscow (1969), Vol. 8, pp. 130–313.Google Scholar
  18. 18.
    J. H. Lister, Fused pyrimidines. Part II. Purines, D. E. Brown (ed.), Wiley-Interscience, New York, London, Sydney, Toronto (1971).Google Scholar
  19. 19.
    E. V. Aleksandrova, Khim.-Farm. Zh., 37(12), 21–27 (2003).Google Scholar
  20. 20.
    P. Ü. Civcir, J. Mol. Struct., 235, 121–125 (2001).Google Scholar
  21. 21.
    H. M. Israel, N. Muhammad, and E. J. Modest, J. Heterocycl. Chem., 8, 1019–1023 (1971).CrossRefGoogle Scholar
  22. 22.
    Z. Neiman, F. Bergmann, D. Lichtenberg, et al., J. Chem. Soc. (C), 1822–1829 (1971).Google Scholar
  23. 23.
    M. Yu. Lidak, Ja. Ja. Shluke, S. E. Poritere, Khim. Geterotsikl. Soedin., No. 11, 1561–1566 (1972).Google Scholar
  24. 24.
    G. L. Szekeres, R. K. Robins, K. H. Boswell, et al., J. Heterocycl. Chem., 12, 15–20 (1975).CrossRefGoogle Scholar
  25. 25.
    G. W. Grigg, Y. Iwai, D. J. Brown, et al., Aust. J. Chem., 32, 2713–2718 (1979).CrossRefGoogle Scholar
  26. 26.
    H. O. Kim, R. F. Schinati, S. Nampalli, et al., J. Med. Chem., 36, 30–37 (1993).PubMedCrossRefGoogle Scholar
  27. 27.
    D. B. Nilov, A. V. Kadushkin, I. F. Kerbnikova, et al., Khim.-Farm. Zh., 29(2), 27–31 (1995).Google Scholar
  28. 28.
    A. K. Pathak, V. Pathak, L. E. Seitz, et al., J. Med. Chem., 47, 273–276 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    G. B. Barlin, Aust. J. Chem., 35, 2299–2306 (1982).CrossRefGoogle Scholar
  30. 30.
    US Patent 4443435; Chem. Abstr., 101, 152270c (1984).Google Scholar
  31. 31.
    E. V. Ratsino, E. V. Travkin, T. B. Skobeleva, et al., Khim.-Farm. Zh., 18(8), 954–958 (1984).Google Scholar
  32. 32.
    K. Silver and K. Sloan, J. Pharm. Sci., 79(11), 66–73 (1990).CrossRefGoogle Scholar
  33. 33.
    I. Mervyn, M. Naslem, and M. Edward, J. Heterocycl. Chem., 8, 1019–1023 (1971).CrossRefGoogle Scholar
  34. 34.
    G. Wagner, J. Oehlke, and H. Pischel, Pharmazie, 29(3), 160–164 (1974).PubMedGoogle Scholar
  35. 35.
    G. Wenska, Pol. J. Chem., 55, 1157–1161 (1981).Google Scholar
  36. 36.
    W. P. Gati, L. I. Wiebe, E. E. Knaus, et al., Biochem. Cell. Biol., 65(5), 467–473 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Hammed, Solah L. Aboul-Ela, and Adelm Moussa, J. Ind. Chem. Soc., 74, 575–578 (1997); Chem. Abstr., 127, 190912k (1997).Google Scholar
  38. 38.
    R. A. Tramp, S, Van Ameiide, C. P’tz, et al., J. Med. Chem., 47(22), 5441–5450 (2004).CrossRefGoogle Scholar
  39. 39.
    R. A. Tramp, R. F. Spanjersberg, J. K. Von Frittag Drable Küncel, et al., J. Med. Chem., 48(1), 321–329 (2005).CrossRefGoogle Scholar
  40. 40.
    EPO Application 1352910; Ros. Zh. Khim., 04.09–190.140P (2004).Google Scholar
  41. 41.
    GDR Patent 107278; Chem. Abstr., 82, 73421r (1975).Google Scholar
  42. 42.
    D. Arndt and A. Graffi, Zeitschr. Chem., 17, 224–225 (1977).Google Scholar
  43. 43.
    GDR Patent 122386; Ros. Zh. Khim., 70166P (1978).Google Scholar
  44. 44.
    P. A. Lartey and L. R. Fedor, Carbohyd. Res., 69, 89–95 (1979).CrossRefGoogle Scholar
  45. 45.
    A. Parcer and L. R. Fedor, J. Med. Chem., 25, 1505–1507 (1982).CrossRefGoogle Scholar
  46. 46.
    C. K. Zercher and L. R. Fedor, Carbohydr. Res., 165(2), 299–305 (1987).PubMedCrossRefGoogle Scholar
  47. 47.
    A. D. Da Silva, A. D. Machado, C. Tempete, et al., Eur. J. Med. Chem., 29(2), 149–152 (1994).CrossRefGoogle Scholar
  48. 48.
    A. Cerny, A. Capek, and M. Semonsky, in: Advances in Antimicrobial and Antineoplastic Chemotherapy, Prague (1972), pp. 57–59.Google Scholar
  49. 49.
    P. Nuhn, E. Schieling, G. Wagner, et al., Pharmazie, 32(10), 558–561 (1977).PubMedGoogle Scholar
  50. 50.
    D. J. Brown, G. W. Grigg, and Y. Iwai, Austral. J. Chem., 32, 2713–2726 (1979).CrossRefGoogle Scholar
  51. 51.
    E. B. Kochergina, R. N. Sinitsina, A. N. Krasovskii, Izv. Timiryazevsk. Sel’skokhoz. Akad., No. 3, 153–159 (1981).Google Scholar
  52. 52.
    Czech SSR Patent 15014; Chem. Abstr., 80, 60212 (1974).Google Scholar
  53. 53.
    Czech SSR Patent 150002; Chem. Abstr., 80, 60217h (1974).Google Scholar
  54. 54.
    Czech SSR Patent 197709; Chem. Abstr., 100, 51365p (1984).Google Scholar
  55. 55.
    Y. Pu, C. Lowe, M. Soilet, et al., J. Org. Chem., 59, 3642–3655 (1994).CrossRefGoogle Scholar
  56. 56.
    P. M. Kochergin, M. Yu. Gromov, E. V. Aleksandrova, S. Ya. Skachilova, Khim. Geterotsikl. Soedin., No. 11, 1548–1553 (1993).Google Scholar
  57. 57.
    K. V. Kochergina, O. M. Krasovs’kii, M. O. Klyuev, V. O. Zamurenko, Farmats. zh. (Ukr.), No. 6, 33–37 (1981).Google Scholar
  58. 58.
    V. V. Dunaev, E. V. Aleksandrova, A. N. Krasovskii, Khim.-Farm. Zh., 20(10), 1198–1202 (1986).Google Scholar
  59. 59.
    L. I. Zaharkin, V. A. Ol’shevskaya, E. V. Guseva, et al., Zh. Obshch. Khim., 66, 1745–1747 (1996)Google Scholar
  60. 60.
    E. V. Aleksandrova, P. M. Kochergin, I. E. Valashek, Khim.-Farm. Zh., 35(3), 51–52 (2001).Google Scholar
  61. 61.
    M. Yu. Gromov, S. Ya. Skachilova, E. V. Aleksandrova, and P. M. Kochergin, Khim. Geterotsikl. Soedin., No. 10, 1407–1411 (1999).Google Scholar
  62. 62.
    GDR Patent 100951; Chem. Abstr., 80, P83670u (1974).Google Scholar
  63. 63.
    R. Drawbaugh, C. Bouffard, and M. Strauss, J. Med. Chem., 19, 1342–1345 (1976).PubMedCrossRefGoogle Scholar
  64. 64.
    Y. Misuno and K. Ikeda, Chem. Pharm. Bull., 22, 2889–2893 (1974).CrossRefGoogle Scholar
  65. 65.
    S. Baloniak, A. Mroczkiewicz, and A. Ostrowsca, Acta Pol. Pharm., 39, 193–197 (1982).Google Scholar
  66. 66.
    R. Beugelmans and M. Boie-Choussing, Tetrahedron, 42, 1381–1388 (1986).CrossRefGoogle Scholar
  67. 67.
    P. M. Kochergin, I. S. Shmidt, USSR Patent 172814; Byul. Izobret., No. 4, 29 (1965).Google Scholar
  68. 68.
    P. M. Kochergin, I. S. Shmidt, Med. Prom. SSSR, No. 8, 6–8 (1965).Google Scholar
  69. 69.
    P. M. Kochergin, I. S. Shmidt, The Chemistry of Heterocyclic Compounds. 1. Nitrogen-Containing Heterocycles [in Russian], Zinatne, Riga (1967), pp. 130–132.Google Scholar
  70. 70.
    A. S. Singin, T. S. Safonova, Khim.-Farm. Zh., 9, No. 9, 24–26 (1975).Google Scholar
  71. 71.
    H. N. Yeowell and G. B. Elion, J. Heterocycl. Chem., 10, 1017–1019 (1973).CrossRefGoogle Scholar
  72. 72.
    GDR Patent 220961; Ros. Zh. Khim., 23013811 (1985).Google Scholar
  73. 73.
    Polish Patent 128301; Ros. Zh. Khim., 110151P (1987).Google Scholar
  74. 74.
    P. M. Kochergin, E. V. Aleksandrova, V. S. Korsunskii, V. S. Shlikhunova, Khim. Geterotsikl. Soedin., No. 2, 217–220 (2000).Google Scholar
  75. 75.
    P. M. Kochergin, E. V. Aleksandrova, V. S. Korsunskii, V. S. Shlikhunova, Khim. Geterotsikl. Soedin., No. 2, 221–224 (2000).Google Scholar
  76. 76.
    P. M. Kochergin, E. V. Aleksandrova, V. S. Korsunskii, V. S. Shlikhunova, Khim. Geterotsikl. Soedin., No. 3, 372–379 (2000).Google Scholar
  77. 77.
    P. M. Kochergin, L. S. Tolvinskaya, I. B. Zhukova, et al., Proceedings of the V Russian National Congress “Humans and Medicine” [in Russian], Moscow (1998), pp. 578–579.Google Scholar
  78. 78.
    P. M. Kochergin, E. V. Aleksandrova, L. S. Tolvinskaya, et al., Khim.-Farm. Zh., 34(11), 9–11 (2000).Google Scholar
  79. 79.
    P. M. Kochergin, E. V. Aleksandrova, V. S. Korsunskii, et al., Khim. Geterotsikl. Soedin., No. 4, 538–543 (2001).Google Scholar
  80. 80.
    E. V. Aleksandrova, P. M. Kochergin, L. V. Persanova, et al., Khim. Geterotsikl. Soedin., No. 5, 663–667 (2001).Google Scholar
  81. 81.
    I. B. Zhukova, L. S. Tolvinskaya, P. M. Kochergin, et al., Russian Federation Patent No. 2179170; Byul. Izobret., No. 4 (2002).Google Scholar
  82. 82.
    E. V. Aleksandrova, Author’s Abstract of Doctoral Thesis in Chemical Sciences, Moscow (2006).Google Scholar
  83. 83.
    A. Kowalska and K. Pluta, Heterocycles, 75, 555–569 (2008).CrossRefGoogle Scholar
  84. 84.
    A. Kowalska, K. Pluta, and K. Suwinska, Heterocycles, 78, 2455–2466 (2009).CrossRefGoogle Scholar
  85. 85.
    European Patent 186454; Chem. Abstr., 105, 172183q (1986).Google Scholar
  86. 86.
    J. B. Press, J. J. McNally, Z. G. Hajos, and R. A. Sawyers, J. Org. Chem., 57, 6335–6339 (1992).CrossRefGoogle Scholar
  87. 87.
    A. A. Shklyarenko, V. V. Yakovlev, V. N. Chistokletov, Zh. Organ. Khim., 40, 1108–1109 (2004).Google Scholar
  88. 88.
    V. V. Yakovlev, A. A. Shklyarenko, Zh. Organ. Khim., 44(4), 633–635 (2008).Google Scholar
  89. 89.
    H. Higushi, M. Matsuoka, Y. Sakata, and S. Misumi, Tetrahedron. Lett., 26(32), 3849–3852 (1985).CrossRefGoogle Scholar
  90. 90.
    D. G. Kim, Yu. R. Galina, Khim. Geterotsikl. Soedin., No. 10, 1551–1553 (2004).Google Scholar
  91. 91.
    M. A. Anufriev, E. V. Racino, M. I. Lifshic, et al., Zh. Obshch. Khim., 50, 2631 (1980).Google Scholar
  92. 92.
    M. A. Anufrieva, E. V. Ratsino, L. V. Sokolov, et al., Zh. Obshch. Khim., 52, 1015–1019 (1982).Google Scholar
  93. 93.
    E. S. Turbashova, N. A. Orlova, E. V. Ratsino, and L. V. Sokolov, Zh. Organ. Khim., 17(4), 736–740 (1981).Google Scholar
  94. 94.
    J. Davidson, J. Murray, and P. Preston, J. Chem. Res., Microfiche, No. 15–18, 1601–1627 (1981); Ros. Zh. Khim., 8Zh725 (1982).Google Scholar
  95. 95.
    C. Y. Shine and S.-H. Chu, J. Org. Chem., 41, 1847–1848 (1976).CrossRefGoogle Scholar
  96. 96.
    M. L. Vohl, M. E. Westarp, H. Wekerle, et al., Arzneim. Forsch., 40, 80–84 (1990).Google Scholar
  97. 97.
    É. Abele, K. Rubina, R. Abele, et al., Khim. Geterotsikl. Soedin., No. 9, 1197–1202 (1999).Google Scholar
  98. 98.
    K. G. Silver, K. B. Sloan, R. P. Waranis, and A. Saab, J. Heterocycl. Chem., 25, 1077–1081 (1988).CrossRefGoogle Scholar
  99. 99.
    Xinchao Chen, E. R. Kern, J. C. Drach, et al., J. Med. Chem., 46, 1531–1537 (2003).Google Scholar
  100. 100.
    K. H. Boswell, L. F. Christensen, D. A. Shuman, and R. K. Robins, J. Heterocycl. Chem., 12, 1–9 (1975).CrossRefGoogle Scholar
  101. 101.
    K. Sekiya, H. Takashima, N. Ueda, et al., J. Med. Chem., 45, 3138–3142 (2002).PubMedCrossRefGoogle Scholar
  102. 102.
    S. A. Laufer, D. M. Domeyer, T. R. F. Scior, et al., J. Med. Chem., 48(3), 710–722 (2005).PubMedCrossRefGoogle Scholar
  103. 103.
    R. S. Sinyak, I. A. Mazur, V. R. Stets, et al., Khim.-Farm. Zh., 20(2), 168–171 (1986).Google Scholar
  104. 104.
    P. M. Kochergin, I. S. Shmidt, USSR Patent 173781; Byul. Izobret., No. 16, 31 (1965).Google Scholar
  105. 105.
    A. A. Elfarra and I. Y. Hwang, Chem. Res. Toxicol., 9(3), 654–658 (1996).PubMedCrossRefGoogle Scholar
  106. 106.
    V. Nair, S. Richardson, and R. Coffman, J. Org. Chem., 47, 4520–4524 (1982).CrossRefGoogle Scholar
  107. 107.
    G. Wagner, V. Hanfeld, and H. Pischel, Pharmazie, 32, 748–750 (1977).PubMedGoogle Scholar
  108. 108.
    J. Elguero, P. Goya, A. Martinez, et al., Chem. Ber., 122, 919–924 (1989).CrossRefGoogle Scholar
  109. 109.
    V. Yadav, C. K. Chu, R. H. Rais, et al., J. Med. Chem., 47(8), 1987–1996 (2004).PubMedCrossRefGoogle Scholar
  110. 110.
    R. A. Cadenas, J. Mosettig, M. E. Gepli, Steroids, 61, 703–709 (1996).PubMedCrossRefGoogle Scholar
  111. 111.
    Japanese Patent 8254189; Chem. Abstr., 97, 127406v (1982).Google Scholar
  112. 112.
    K. Doyama, H. Hama, Y. Sakata, and S. Misumi, Tetrahedron Lett., 24, 5253–5256 (1983).CrossRefGoogle Scholar
  113. 113.
    K. Okumura, T. Oine, Y. Yamada, et al., J. Org. Chem., 36, 1563–1579 (1971).CrossRefGoogle Scholar
  114. 114.
    N. D. Gracheva, A. Ya. Veinberg, and G. I. Samokhvalov, Zh. Obshch. Khim., 41, 1376–1380 (1971).Google Scholar
  115. 115.
    É. Alksnis, M. Lidak, and É. Lukevic, Khim. Geterotsikl. Soedin., No. 5, 654–658 (1995).Google Scholar
  116. 116.
    I. Kos Nico and H. C. Van der Plas, J. Org. Chem., 46, 5000–5003 (1981).CrossRefGoogle Scholar
  117. 117.
    E. V. Aleksandrova, P. M. Kochergin, Khim. Geterotsikl. Soedin., No. 1, 3–34 (2009).Google Scholar
  118. 118.
    R. J. Badger and G. B. Barlin, J. Chem. Soc. Perkin. Trans. II, 1854–1859 (1974).Google Scholar
  119. 119.
    G. Revancar, N. Namura, N. Imamura, et al., J. Med. Chem., 34, 752–756 (1991).CrossRefGoogle Scholar
  120. 120.
    N. B. Hanna, B. K. Bhattacharya, R. K. Robins, et al., J. Med. Chem., 37, 177–183 (1994).PubMedCrossRefGoogle Scholar
  121. 121.
    R. J. Badger and G. B. Barlin, J. Chem. Soc. Perkin Trans. II, 1176–1180 (1976).Google Scholar
  122. 122.
    Ch. E. M’ller, M. Thorand, R. Qurishi, et al., J. Med. Chem., 45(16), 3440–3450 (2002).CrossRefGoogle Scholar
  123. 123.
    H. Sugimura and H. Tokei, Bull. Chem. Soc. Japan, 52, 664–666 (1985).CrossRefGoogle Scholar
  124. 124.
    P. M. Kochergin, E. V. Aleksandrova, M. Yu. Gromov, Khim. Geterotsikl. Soedin., No. 10, 1435–1436 (1993).Google Scholar
  125. 125.
    P. M. Kochergin, M. Yu. Gromov, E. V. Aleksandrova, S. Ya. Skachilova, Khim. Geterotsikl. Soedin., No. 2, 265–270 (1996).Google Scholar
  126. 126.
    P. M. Kochergin, M. Yu. Gromov, S. Ya. Skachilova, E. V. Aleksandrova, Khim. Geterotsikl. Soedin., No. 7, 1003–1004 (1997).Google Scholar
  127. 127.
    P. M. Kochergin, E. V. Aleksandrova, E. V. Rusinova, Khim. Geterotsikl. Soedin., No. 10, 1434–1435 (1993).Google Scholar
  128. 128.
    C. G. Groth, L. Backman, I. M. Morales, et al., Transplantation, 67(7), 1036–1042 (1999).PubMedCrossRefGoogle Scholar
  129. 129.
    N. Perico and G. Remuzzi, Drugs, 54(4), 533–570 (1999).CrossRefGoogle Scholar
  130. 130.
    R. P. Baughman and E. E. Lower, Clin. Immunother., 67, 431–442 (1996).CrossRefGoogle Scholar
  131. 131.
    L. N. Stolk, A. M. Boerbooms, R. A. de Abren, et al., Arthrit. Rheumatol., 41, 1858–1866 (1998).CrossRefGoogle Scholar
  132. 132.
    T. Munster and D. E. Furst, Clin. Exp. Rheumatol., 17(6), 529–536 (1999).Google Scholar
  133. 133.
    M. E. Neurath, R. Wanitschke, M. Peters, et al., Gut, 44(5), 625–628 (1999).PubMedCrossRefGoogle Scholar
  134. 134.
    V. Panajotovova and M. Melka, Neoplasma, 38(6), 565–574 (1991).PubMedGoogle Scholar
  135. 135.
    M. Miko, J. Krepelka, and M. Melka, Drugs Exp. Clin. Res., 14(9), 575–580 (1988).PubMedGoogle Scholar
  136. 136.
    M. Melka, J. Krepelka, M. Miko, et al., Neoplasma, 36(4), 419–425 (1989).PubMedGoogle Scholar
  137. 137.
    M. Miko, J. Krepelka, and M. Melka, Cell. Biochem. Funct., 10(2), 115–122 (1992).PubMedCrossRefGoogle Scholar
  138. 138.
    R. A. Finch, K. M. Vasquez, H. B. Hanna, et al., Cancer Lett., 50(1), 63–70 (1990).PubMedCrossRefGoogle Scholar
  139. 139.
    I. Y. Hwang and A. A. Elfarra, J. Pharmacol. Exp. Ther., 251(2), 448–454 (1989).PubMedGoogle Scholar
  140. 140.
    I. Y. Hwang and A. A. Elfarra, J. Pharmacol. Exp. Ther., 258(1), 171–177 (1991).PubMedGoogle Scholar
  141. 141.
    A. A. Elfarra and I. Y. Hwang, Drug. Metab. Dispos., 21(5), 841–845 (1993).PubMedGoogle Scholar
  142. 142.
    European patent 186454; Chem. Abstr., 105, 172183q (1986).Google Scholar
  143. 143.
    D. A. Benson, I. Karsch-Mizrach, D. J. Lipman, et al., Genbank. Nucleic Acids Res., 28, 15–18 (2000).CrossRefGoogle Scholar
  144. 144.
    F. G. Braga, E. S. Coimbra, M. de O. Matos, et al., J. Med. Chem., 42(4), 530–537 (2007).CrossRefGoogle Scholar
  145. 145.
    C. Volonte and L. A. Greene, N. J. Neurochem., 58, 700–708 (1992).CrossRefGoogle Scholar
  146. 146.
    M. Presta, M. Rusnati, M. Belleri, et al., Cancer Res., 59(5), 2417–2424 (1999).PubMedGoogle Scholar
  147. 147.
    PCT Int. Appl. WO 9720843; Chem. Abstr., 127, 108802t (1997).Google Scholar
  148. 148.
    T. Dervieux and R. Boulieu, Clin. Chem., 44(12), 2511–2515 (1971).Google Scholar
  149. 149.
    R. H. Rais, O. N. Al Safarjalani, V. Yadan, et al., Biochem. Pharmacol., 69(10), 1409–1419 (2005).PubMedCrossRefGoogle Scholar
  150. 150.
    O. N. Al Safarjalani, F. N. M. Naguib, and M. H. El Kouni, Antimicrob. Agents Chemother., 47(10), 3247–3251 (2003).PubMedCrossRefGoogle Scholar
  151. 151.
    Chung-Ming Tset, J. A. Belt, S. M. Jarvis, et al., J. Biol. Chem., 260(6), 3506–3511 (1985).Google Scholar
  152. 152.
    A. M. Gero, Mol. Biochem. Parasitol., 35(3), 269–276 (1989).PubMedCrossRefGoogle Scholar
  153. 153.
    J. R. Hammond, J. Pharmacol. Exp. Ther., 259(2), 799–807 (1991).PubMedGoogle Scholar
  154. 154.
    J. R. Hammond, Biochem. J., 287(2), 431–436 (1992).PubMedGoogle Scholar
  155. 155.
    M. E. Bradley, K. A. Kuenzli, and I. L. Buxton, J. Pharmacol. Exp. Ther., 264(3), 1033–1039 (1993).PubMedGoogle Scholar
  156. 156.
    Zh. Zhu, J. Furr, and J. K. Buolamwini, J. Med. Chem., 46(5), 831–837 (2003).PubMedCrossRefGoogle Scholar
  157. 157.
    P. Y. F. Deghati, A. Boryhini, Van der Nieuwendijk, et al., Bioorg. Med. Chem., 11, 899–908 (2003).Google Scholar
  158. 158.
    C. J. Endres and J. D. Unadkat, Mol. Pharmacol., 67(3), 837–844 (2005).PubMedCrossRefGoogle Scholar
  159. 159.
    P. W. Tas, C. Eisemann, and N. Roewer, Eur. J. Anesthesiol., 22(9), 694–702 (2005).CrossRefGoogle Scholar
  160. 160.
    European Patent 331511; Chem. Abstr., 112, 98559t (1990).Google Scholar
  161. 161.
    R. G. Tsushima, J. E. Kelly, J. J. Salata, et al., J. Pharmacol. Exp. Ther., 291(2), 845–855 (1999).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Zaporozh’e State Medical UniversityZaporozh’eUkraine

Personalised recommendations