Advertisement

Pharmaceutical Chemistry Journal

, Volume 46, Issue 7, pp 456–459 | Cite as

An in vitro model for evaluation of the release rate of hydrophobic compounds from coenzyme Q10 lozenges and in vivo/in vitro correlation

  • M. V. Karlina
  • O. N. Pozharitskaya
  • V. M. Kosman
  • A. N. Shikov
  • A. A. Zabozlaev
  • M. N. Makarova
  • V. G. Makarov
Article
  • 128 Downloads

An original in vitro two-phase model was proposed for evaluating the dissolution of hydrophobic compounds from oral lozenges. The new model was used for biopharmaceutical evaluation of lozenges with coenzyme Q10. The mechanism of drug release was determined. The main pharmacokinetic parameters of coenzyme Q10 in tablets studied in vivo and in vitro were compared in order to check the adequacy of the proposed model. A correlation of power A (r = 0.8991) between drug release and pharmacokinetic parameters was found and provided the correct prognosis of the experimental pharmacokinetic profile of coenzyme Q10 according to its release rate. This confirmed the validity of the proposed in vitro model.

Keywords

oral lozenges coenzyme Q10 two-phase dissolution medium model 

Notes

Acknowledgments

The work was supported financially by Pharmasoft Co., Russia.

References

  1. 1.
    M. Balamurugan, V. S. Saravanan, P. Ganesh, et al., Res. J. Pharm. Technol., 1(4), 377 – 380 (2008).Google Scholar
  2. 2.
    D. Harris and J. R. Robinson, J. Pharm. Sci., 81(1), 1 – 10 (1992).Google Scholar
  3. 3.
    USP 32 / NF 27, General Chapter 724, Drug Release, Convention Inc., Rockville (2009), p. 272.Google Scholar
  4. 4.
    European Pharmacopoeia 6, Pharmaceutical Technical Procedure, 2.9.3. Dissolution test for solid dosage forms. European Directorate for the Quality of Medicines & Healthcare (2007), pp. 266 – 275.Google Scholar
  5. 5.
    M. V. Karlina, V. M. Kosman, O. N. Pozharitskaya, et al., Khim.-farm. Zh., 46(4), 42 – 45 (2012).Google Scholar
  6. 6.
    V. K. Piotrovskii, Farmakol. Toksikol., 49(5), 118 – 127 (1986).PubMedGoogle Scholar
  7. 7.
    S. O. Klyuchnikov and E. S. Gnetneva, Pediatriya, 87(3), 103 – 110 (2008).Google Scholar
  8. 8.
    O. I. Corrigan, Adv. Exp. Med. Biol., 423, 111 – 128 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    Human metabolome database, URL: http://www.hmdb.ca/metabolites/hmdb01072 (accessed May 23, 2011).
  10. 10.
    General pharmacopoeial article (OFS) 42-0003-04 “Dissolution” (2004).Google Scholar
  11. 11.
    E. V. Velikaya, V. A. Kemenova, and N. B. Demina, Khim.-farm. Zh., 38(5), 38 – 41 (2004).Google Scholar
  12. 12.
    M. V. Karlina, O. N. Pozharitskaya, and V. M. Kosman, Vopr. Biol. Med. Farm. Khim., 9(3), 42 – 46 (2006).Google Scholar
  13. 13.
    L. F. Sidel?nikova, S. M. Zakharova, and Zh. I. Rakhnii, Sovrem. Stomatol., 2(51), 44 – 49 (2010).Google Scholar
  14. 14.
    G. Frenning, E. K. Rganar, and M. Stromme, J. Pharm. Sci., 91(3), 776 – 784 (2002).Google Scholar
  15. 15.
    P. Costa and J. M. Sousa Lobo, Drug. Dev. Ind. Pharm., 29(1), 89 – 97 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    H. K. Raslan and H. Maswadeh, Indian J. Pharm. Sci., 68, 308 – 312 (2006).CrossRefGoogle Scholar
  17. 17.
    J. Emami, J. Pharm. Pharm. Sci., 9(1), 82 – 100 (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. V. Karlina
    • 1
  • O. N. Pozharitskaya
    • 1
  • V. M. Kosman
    • 1
  • A. N. Shikov
    • 1
  • A. A. Zabozlaev
    • 2
  • M. N. Makarova
    • 1
  • V. G. Makarov
    • 1
  1. 1.St. Petersburg Institute of PharmacySt. PetersburgRussia
  2. 2.Pharmasoft CompanyMoscowRussia

Personalised recommendations