Advertisement

Pharmaceutical Chemistry Journal

, Volume 46, Issue 4, pp 241–244 | Cite as

Effect of polyethyleneglycol on coenzyme Q10 bioavailability from nanosystems in vitro

  • M. V. Karlina
  • V. M. Kosman
  • O. N. Pozharitskaya
  • A. N. Shikov
  • V. G. Makarov
  • J. Heinämäki
  • J. Yliruusi
  • R. Hiltunen
Article
  • 114 Downloads

Coenzyme Q10 (CoQ10) is a natural antioxidant of the oil-soluble benzoquinone group that is involved in electron transport in mitochondria. CoQ10 possesses a broad spectrum of pharmacological activity. However, its insolubility in water and low bioavailability upon peroral administration are significant disadvantages. The present work was aimed at a biopharmaceutical evaluation of nanosystems (NS) with CoQ10 that are suitable for peroral administration and exhibit increased bioavailability in vitro. Solid NS of CoQ10 with polyethyleneglycol (PEG) carriers of various molecular weights (1,500; 6,000; 35,000) were prepared in order to increase the dissolution rate of CoQ10. The NS particle sizes were in the range 48.4 – 200.3 nm. The influences of the PEG molecular weight and the ratio of NS components were evaluated using dispersion analysis. Regression equations describing the effects of these factors on the drug-release and dissolution rates were obtained by processing the results. Response surfaces that adequately described drug dissolution were plotted.

Key words

coenzyme Q10 nanosystem bioavailability 

References

  1. 1.
    G. P. Littaru and L. Tiano, Mol. Biotechnol., 37(1), 31 – 37 (2007).CrossRefGoogle Scholar
  2. 2.
    S. O. Klyuchnikov and E. S. Gyetneva, Pediatriya, 3(87), 103 – 110 (2008).Google Scholar
  3. 3.
    V. L. Lakomkin and O. V. Korkina, Kardiologiya, 12, 51 – 55 (2002).Google Scholar
  4. 4.
    V. I. Kapel’ko, Ross. Med. Zh., 11(21), 1185 – 1188 (2003).Google Scholar
  5. 5.
    R. Wajda and J. Zirkel, J. Med. Food, 10, No. 4, 731 – 734 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    A. N. Shikov, O. N. Pozharitskaya, I. Miroshnyk, et al., Int. J. Pharm., 377(1 – 2), 148 – 152 (2009).PubMedCrossRefGoogle Scholar
  7. 7.
    O. N. Pozharitskaya, M. V. Karlina, A. N. Shikov, et al., Phytomedicine, 16(2 – 3), 244 – 251 (2009).PubMedCrossRefGoogle Scholar
  8. 8.
    M. V. Karlina, O. N. Pozharitskaya, and A. N. Shikov, Pharm. Chem. J., 43(6), 352 – 354 (2009).CrossRefGoogle Scholar
  9. 9.
    M. V. Karlina, O. N. Pozharitskaya, A. N. Shikov, et al., Pharm. Chem. J., 44(9), 501 – 503 (2010).CrossRefGoogle Scholar
  10. 10.
    M. V. Karlina, O. N. Pozharitskaya, and V. M. Kosman, Vopr. Biol. Med. Farm. Khim., 9(3), 42 – 46 (2006).Google Scholar
  11. 11.
    Y. Ozawa, Y. Mizushima, and I. Koyama, Drug. Res., 36, 689 – 690 (1986).Google Scholar
  12. 12.
    T. R. Kommurur, D. Gurley, M. A. Khan, et al., Int. J. Pharm., 212, 233 – 246 (2001).CrossRefGoogle Scholar
  13. 13.
    J. Hatanaka, Y. Kimura, Z. Lai-Fu, et al., Int. J. Pharm., 363, 112 – 117 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    P. R. Nepal, H.-K. Han, and H.-K. Choi, Int. J. Pharm., 383, 147 – 153 (2010).PubMedCrossRefGoogle Scholar
  15. 15.
    K. H. Bhandari, M. Newa, J. A. Kim, et al., Biol. Pharm. Bull., 30(6), 1171 – 1176 (2007).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Hussain, V. Jaitley, and A. T. Florence, Adv. Drug Delivery Rev., 50, 107 – 142 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. V. Karlina
    • 1
  • V. M. Kosman
    • 1
  • O. N. Pozharitskaya
    • 1
  • A. N. Shikov
    • 1
  • V. G. Makarov
    • 1
  • J. Heinämäki
    • 2
  • J. Yliruusi
    • 2
  • R. Hiltunen
    • 2
  1. 1.St. Petersburg Institute of PharmacySt. PetersburgRussia
  2. 2.University of Helsinki, Faculty of PharmacyHelsinkiFinland

Personalised recommendations